Определение: Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Пусть дана точка Q на одной из граней двугранного угла. Опустим перпендикуляр QР на ребро АВ этого угла и перпендикуляр QH на вторую грань. Соединим точки Н и Р.
НР перпендикулярна прямой АВ по теореме о трех перпендикулярах. Треугольник QHP - прямоугольный, а мерой двугранного угла является градусная мера угла QPH по определению. Косинус этого угла равен отношению прилежащего катета к гипотенузе, то есть Cos(<QPH) = QH/QP = 1/2 (так как QP = 2*QH по условию).
В основании правильной треугольной пирамиды лежит правильный треугольник. Вершина такой пирамиды проецируется в центр основания. Центр правильного треугольника является точка О - точка пересечения бисссектрис, медиан и высот. СН = h , ∠ACB = αВ ΔАВС: Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.СО:ОН = 2:1 ⇒ СО = 2•СН/3 = 2h/3В ΔСАН: sin60° = CH/AC ⇒ AC = CH/sin60° = CH/(√3/2) = 2h/√3В ΔСМО: tgα = MO/CO ⇒ MO = CO•tgα = 2h•tgα/3V пир. = (1/3)•Sabc•MO = (1/3) • (AC²•√3/4) • MO = (1/3) • (2h/√3)² • (√3/4) • (2h•tgα/3) = 2√3•h³•tgα/27ОТВЕТ: V = 2√3•h³•tgα/27
Мера двугранного угла равна 60°.
Объяснение:
Определение: Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Пусть дана точка Q на одной из граней двугранного угла. Опустим перпендикуляр QР на ребро АВ этого угла и перпендикуляр QH на вторую грань. Соединим точки Н и Р.
НР перпендикулярна прямой АВ по теореме о трех перпендикулярах. Треугольник QHP - прямоугольный, а мерой двугранного угла является градусная мера угла QPH по определению. Косинус этого угла равен отношению прилежащего катета к гипотенузе, то есть Cos(<QPH) = QH/QP = 1/2 (так как QP = 2*QH по условию).
ответ: <QPH = arccos(1/2) = 60°.
В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к основанию под углом α. Найти объём пирамиды.
===========================================================
В основании правильной треугольной пирамиды лежит правильный треугольник. Вершина такой пирамиды проецируется в центр основания. Центр правильного треугольника является точка О - точка пересечения бисссектрис, медиан и высот. СН = h , ∠ACB = αВ ΔАВС: Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.СО:ОН = 2:1 ⇒ СО = 2•СН/3 = 2h/3В ΔСАН: sin60° = CH/AC ⇒ AC = CH/sin60° = CH/(√3/2) = 2h/√3В ΔСМО: tgα = MO/CO ⇒ MO = CO•tgα = 2h•tgα/3V пир. = (1/3)•Sabc•MO = (1/3) • (AC²•√3/4) • MO = (1/3) • (2h/√3)² • (√3/4) • (2h•tgα/3) = 2√3•h³•tgα/27ОТВЕТ: V = 2√3•h³•tgα/27