51 см.
Объяснение:
Допустим равнобедренная сторона будет 15 см, тогда основание будет 21 см.
Равнобедренные стороны всегда равны между собой, следовательно
P= 15+15+21=51 см.
Два раза 15, т.к. две стороны по 15, т.е. равнобедренные у треугольника
51 см или 57 см.
Треугольник равнобедренный, а значит какие-то две стороны равны. Либо две стороны равны 15 см, либо две стороны равны 21 см.
Но существует неравенство треугольника, из которого следует, что одна из сторон обязана быть меньше, чем сумма двух других.
То есть в треугольнике АВС: АС < АВ+ВС; АВ < АС+ВС; ВС < АВ+АС
Проверим, какой равнобедренный треугольник с представленными сторонами может существовать:
Допустим АВ = 15 см, АС = 21 см, а ВС = 15 см.
Тогда АВ < АС+ВС (15 < 21+15 - верно), АС < АВ+ВС (21 < 15+15 - верно),
ВС < АВ+АС (15 < 15+21 - верно)
Такой треугольник может существовать.
Проверим второй вариант:
АВ = 15 см, АС = 21 см, а ВС = 21 см.
Тогда АВ < АС+ВС (15 < 21+21 - верно), АС < АВ+ВС (21 < 15+21 - верно),
ВС < АВ+АС (21 < 15+21 - верно)
И такой треугольник может существовать.
Ну а теперь найдем два варианта периметра этого треугольника (периметр - это сумма всех его сторон).
Периметр 1: 15см+21см+15см = 51см.
Периметр 2: 15+21см+21см = 57 см.
51 см.
Объяснение:
Допустим равнобедренная сторона будет 15 см, тогда основание будет 21 см.
Равнобедренные стороны всегда равны между собой, следовательно
P= 15+15+21=51 см.
Два раза 15, т.к. две стороны по 15, т.е. равнобедренные у треугольника
51 см или 57 см.
Объяснение:
Треугольник равнобедренный, а значит какие-то две стороны равны. Либо две стороны равны 15 см, либо две стороны равны 21 см.
Но существует неравенство треугольника, из которого следует, что одна из сторон обязана быть меньше, чем сумма двух других.
То есть в треугольнике АВС: АС < АВ+ВС; АВ < АС+ВС; ВС < АВ+АС
Проверим, какой равнобедренный треугольник с представленными сторонами может существовать:
Допустим АВ = 15 см, АС = 21 см, а ВС = 15 см.
Тогда АВ < АС+ВС (15 < 21+15 - верно), АС < АВ+ВС (21 < 15+15 - верно),
ВС < АВ+АС (15 < 15+21 - верно)
Такой треугольник может существовать.
Проверим второй вариант:
АВ = 15 см, АС = 21 см, а ВС = 21 см.
Тогда АВ < АС+ВС (15 < 21+21 - верно), АС < АВ+ВС (21 < 15+21 - верно),
ВС < АВ+АС (21 < 15+21 - верно)
И такой треугольник может существовать.
Ну а теперь найдем два варианта периметра этого треугольника (периметр - это сумма всех его сторон).
Периметр 1: 15см+21см+15см = 51см.
Периметр 2: 15+21см+21см = 57 см.