Очевидно, если две плоскости взаимно перпендикулярны, мы должны использовать даную нам аксиому 4, В которой говорится что Если 2 плоскости имеют общую точку, то они пересекаются по прямой. Нам дано что угол пересечения равен 90 градусам, что дает нам понять что треугольники будут задействованы. Проведем отрезки из точки А равные 20 и 21 см. Оттуда мы их соединим, и продлим их. Получим 2 квадрата гипотенузы умноженные на 4. После чего нужно использовать формулу радиуса окружности вокруг треугольника за площадью. (Герона) После этого спокойно говорим что за Теоремой 2.2 2 прямые лежать в 1 плоскости. Так как они пересекают плоскость (пускай альфа) то они лежат в этой площине за 3 аксиомой.Из этого выходит что угол пересечаения дает нам использовать все теоремы планиметрии. ТАкие как теорема Пифагора или среднего значения. Из чего выплывает ответ : 20.5 см!
Расстояние L равно гипотенузе треугольника с катетами 20 и 21 см.
L = √(20² + 21²) = √(400 + 441) = √841 = 29 см.
Очевидно, если две плоскости взаимно перпендикулярны, мы должны использовать даную нам аксиому 4, В которой говорится что Если 2 плоскости имеют общую точку, то они пересекаются по прямой. Нам дано что угол пересечения равен 90 градусам, что дает нам понять что треугольники будут задействованы. Проведем отрезки из точки А равные 20 и 21 см. Оттуда мы их соединим, и продлим их. Получим 2 квадрата гипотенузы умноженные на 4. После чего нужно использовать формулу радиуса окружности вокруг треугольника за площадью. (Герона) После этого спокойно говорим что за Теоремой 2.2 2 прямые лежать в 1 плоскости. Так как они пересекают плоскость (пускай альфа) то они лежат в этой площине за 3 аксиомой.Из этого выходит что угол пересечаения дает нам использовать все теоремы планиметрии. ТАкие как теорема Пифагора или среднего значения. Из чего выплывает ответ : 20.5 см!