Две боковые грани наклонной призмы образуют угол 30 градусов, расстояние от их общего ребра до двух других рёбер равно 5, боковое ребро призмы равно 8. Найти боковую поверхность призмы. С рисунком
ВК(в условие ты не указал(а) где должна находиться буква "К", поэтому ничем не смогу )
Стороны треугольника = 3см,4см,5см
На счёт вектора прости тоже не , только сегодня начала изучать
Объяснение:
Диагональю ВD диагональ АС делится пополам, соответственно мы 6:2=3см
Стороны треуголька находим по теореме Пифагора. Можно воспользовать "египетской пирамиды" либо считать напрямую. √а^2+√b^2 вместо "а" подставляем 3, вместо "b" 4, в итоге получаем √9+√16=√25, извлекаем корень и ответ равен 5см
ответ:АО=3см
ВК(в условие ты не указал(а) где должна находиться буква "К", поэтому ничем не смогу )
Стороны треугольника = 3см,4см,5см
На счёт вектора прости тоже не , только сегодня начала изучать
Объяснение:
Диагональю ВD диагональ АС делится пополам, соответственно мы 6:2=3см
Стороны треуголька находим по теореме Пифагора. Можно воспользовать "египетской пирамиды" либо считать напрямую. √а^2+√b^2 вместо "а" подставляем 3, вместо "b" 4, в итоге получаем √9+√16=√25, извлекаем корень и ответ равен 5см
Объяснение:
8)
АВ1=АD=10ед. АВ1С1D- квадрат.
∆АВ1В- прямоугольный треугольник
По теореме Пифагора
ВВ1=√(АВ1²-АВ²)=√(10²-6²)=8 ед.
Sбок=Р(АВСD)*ВВ1=2(6+10)*8=256 ед²
ответ: 256ед²
9)
∆DB1C- прямоугольный равнобедренный треугольник. (<DB1C=45°; <B1CD=90°; <B1DC=45°) углы при основании равны.
В1С=В1D/√2=6/√2=3√2 ед
ВС=AD=√2 ед
∆ВВ1С- прямоугольный треугольник
По теореме Пифагора
ВВ1=√(В1С²-ВС²)=√((3√2)²-(√2)²)=√(18-4)=
=√15 ед.
ответ: АА1=√15 ед.
10)
В1В=В1D/2=8/2=4 ед катет против угла 30°
∆ВВ1D- прямоугольный треугольник
По теореме Пифагора
ВD=√(B1D²-B1B²)=√(8²-4²)=4√3 ед.
∆DB1C- прямоугольный, равнобедренный треугольник.
DC=B1C
DC=B1D/√2=8/√2=4√2 ед.
∆ВСD- прямоугольный треугольник
По теореме Пифагора
ВС=√(ВD²-DC²)=√((4√3)²-(4√2)²)=
=√(16*3-16*2)=√(48-32)=√16=4 ед.
ВС=АD=4ед
ответ: AD=4 ед.