КМ соединяет середины сторон ∆ АВС ⇒ КМ его средняя линия и параллельна АС .
КТ соединяет середины сторон ∆ АВD, ⇒ КТ его средняя линия и параллельна ВD (свойство) .
Аналогично ТН║АС и МН║ВD
Лемма:
Если одна из двух параллельных прямых перпендикулярна к третьей, то и другая прямая перпендикулярна к этой третьей прямой.
КТ║ВД
КТ⊥ТН,⇒ ВД⊥ТН; (1)
ТН║АС
ТН⊥ВД⇒ АС⊥ВД (2)
Если диагонали параллелограмма пересекаются под прямым углом (2) , этот параллелограмм - ромб.
--------
Вариант решения.
Обозначим точки пересечения диагонали АС параллелограмма АВСД со сторонам КТ и МН буквами Р и Е, а точки пересечения диагонали ВД со сторонами КМ и ТН буквами Х и У соответственно.
Диагонали АВСД делят стороны ТКМН пополам. ⇒
РКХО=ХМЕО=ЕНУО=УТРО и являются параллелограммами ⇒
их углы при О, противолежащие прямым углам при вершинах прямоугольника КМНТ, тоже прямые. ⇒
АС и ВД пересекаются в точке О про углом 90º.
Если диагонали параллелограмма пересекаются под прямым углом, этот параллелограмм - ромб, что и требовалось доказать.
Докажем, что прямая SK образует с плоскостью квадрата угол SKO. Действительно, KO - проекция SK на (ABC). Аналогично, прямые SL, SM, SN образуют с плоскостью квадрата углы SLO, SMO, SNO. Теперь докажем, что эти 4 угла равны. Действительно, треугольники SKO SMO, SNO, SLO прямоугольные, и равны по двум катетам (второй катет равен расстоянию от центра квадрата до стороны). 4 угла, указанных выше, лежат в равных треугольниках против равных сторон, значит, они равны.
2.Можно найти тангенсы этих углов. Расстояние от центра квадрата до сторон (одни из катетов 4 треугольников имеет такую длину) равно половине стороны, а сторона равна sqrt(62), тогда оно равно sqrt(62)/2. Это прилежащий катет, а противолежащий равен 4. Тогда тангенс равен 4/(sqrt(62)/2)=8sqrt(62)/62=4sqrt(62)/31
Докажите, что если вершины прямоугольника являются серединами сторон некоторого параллелограмма, то этот параллелограм - ромб
----------
Дано: АВСD - параллелограмм, АК=КВ, ВМ=МС, СН=НD, DТ=ТА
КМНТ - прямоугольник.
КМ соединяет середины сторон ∆ АВС ⇒ КМ его средняя линия и параллельна АС .
КТ соединяет середины сторон ∆ АВD, ⇒ КТ его средняя линия и параллельна ВD (свойство) .
Аналогично ТН║АС и МН║ВD
Лемма:
Если одна из двух параллельных прямых перпендикулярна к третьей, то и другая прямая перпендикулярна к этой третьей прямой.
КТ║ВД
КТ⊥ТН,⇒ ВД⊥ТН; (1)
ТН║АС
ТН⊥ВД⇒ АС⊥ВД (2)
Если диагонали параллелограмма пересекаются под прямым углом (2) , этот параллелограмм - ромб.
--------
Вариант решения.
Обозначим точки пересечения диагонали АС параллелограмма АВСД со сторонам КТ и МН буквами Р и Е, а точки пересечения диагонали ВД со сторонами КМ и ТН буквами Х и У соответственно.
Диагонали АВСД делят стороны ТКМН пополам. ⇒
РКХО=ХМЕО=ЕНУО=УТРО и являются параллелограммами ⇒
их углы при О, противолежащие прямым углам при вершинах прямоугольника КМНТ, тоже прямые. ⇒
АС и ВД пересекаются в точке О про углом 90º.
Если диагонали параллелограмма пересекаются под прямым углом, этот параллелограмм - ромб, что и требовалось доказать.
Докажем, что прямая SK образует с плоскостью квадрата угол SKO. Действительно, KO - проекция SK на (ABC). Аналогично, прямые SL, SM, SN образуют с плоскостью квадрата углы SLO, SMO, SNO. Теперь докажем, что эти 4 угла равны. Действительно, треугольники SKO SMO, SNO, SLO прямоугольные, и равны по двум катетам (второй катет равен расстоянию от центра квадрата до стороны). 4 угла, указанных выше, лежат в равных треугольниках против равных сторон, значит, они равны.
2.Можно найти тангенсы этих углов. Расстояние от центра квадрата до сторон (одни из катетов 4 треугольников имеет такую длину) равно половине стороны, а сторона равна sqrt(62), тогда оно равно sqrt(62)/2. Это прилежащий катет, а противолежащий равен 4. Тогда тангенс равен 4/(sqrt(62)/2)=8sqrt(62)/62=4sqrt(62)/31