Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P. Какой величины∡ N и ∡ K, если ∡ L = 5° и ∡ M = 85°?
1. Отрезки делятся пополам, значит, KP =
,
= LP,
∡
= ∡ MPL, так как прямые перпендикулярны и каждый из этих углов равен
°.
По первому признаку равенства треугольник KPN равен треугольнику MPL.
2. В равных треугольниках соответствующие углы равны.
В этих треугольниках соответствующие ∡
и ∡ M, ∡
и∡ L.
∡ K =
°;
∡ N =
°.
Доказательство. Пусть дана трапеция АВСD и средняя линия КМ. Через точки В и М проведем прямую. Продолжим сторону AD через точку D до пересечения с ВМ. Треугольники ВСм и МРD равны по стороне и двум углам (СМ=МD, РВСМ=РМDР - накрестлежащие, РВМС=РDМР - вертикальные) , поэтому ВМ=МР или точка М - середина ВР. КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР:
КМ = 1/2АР=1/2(АD+DF)=1/2(AD+BC)
рисунок не забудь,
1)Рисуешь небольшой квадрат, и имянуешь каждый угол по порядку так, как написано в условии.
получается:
а)От G до FE(не включительно) будет всего лишь :
GH=17см, т.к. просят отрезок именно FЕ, если бы просили ЕF, то было бы GH, HE =17+17=34см.
б)Центр квадрата намного легче посчитать, в отличие от круга.
Центр квадрата будет равен половине его любой стороны (все стороны равны), значит.
О=17:2=8,5см.
Если О действительно центр, то самое короткое расстояние от О до любой стороны будет его перпендикуляром, и в нашем случае будет равно 8,5 см.
ответ:а) 34см,б)8,5см.
Объяснение: