3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
1.1) угол α-вписанный, значит, дуга AC=2*19=38
2) угол β-вписанный, значит, дуга AB=2*47=94
3) BD- диаметр, CD=180-(дуга АВ+ дуга АС)= 180-(38+94)=180-132=48
4) угол х- вписанный, Значит х=1/2 дуги CD=1/2*48=24
ответ: 24 (рисунок внизу)
2.1х+3х+5х=180
9х=180
х=20
1)20*1=20(1-ый угол)
2)20*3=60(2-ой угол)
3)20*5=100(3-ий угол)
Проверка:
20+60+80=180
3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
2)по теореме Пифагора:
20²-16²=√400-256=√144=12
ответ:12 см
Объяснение: рисунок относится к первому заданию
Удачи!