Мы эту тему сейчас проходим,есть только 2 взаимного положения плоскостей- пересекающиеся и параллельные,доказать можно через аксиому:через прямую и точку можно провести плоскость,проведем прямую а параллельную плоскости альфа, так так альфа параллельна бетта,а пересекает бетта;используем другую аксиому:если 2 плоскости имеют общую точку,то они пересекаются,альфа и бетта имеют общую точку,а вот гамма может и не пересекать альфа,в любом случае у все 3 плоскостей общей точки не будет,т.к плоскости пересекаются попарно
Трапеция ABCD, FE- средняя линия, Углы BAD и ABC- прямые.Угол ADC- острый. Угол BCD в два раза больше угла ADC.Точка F средней линии лежит на AB. Из вершины С опустим перпендикуляр на основание AD. Точку пересечения с основанием AD обозначим буквой K. Рассмотрим треугольник CKD. Угол CKD- прямой.Угол KCD = угол BCD-угол BCK= угол BCD-90. Угол BCD=2 углам CDK, из этого угол KCD= 2 угла СDK-90, Угол KCD+ угол CDK=90, 2угла CDK-90+угол CDK=90, 3 угла CDK=180, Угол CDK=60, угол KCD=30. Катет KD лежит против угла в 30 и он равен половине гипотенузы. CD=24, KD=12. Обозначим точку пересечения перпендиккляра с средней линией трапеции точкой N. NF- средняя линия треугольника CKD. NF=1/2KD=12:2=6. EN=BC=9-6=3, AD=BC+KD=3+12=15. ответ: AD=12, BC=3.
Угол BCD=2 углам CDK, из этого угол KCD= 2 угла СDK-90,
Угол KCD+ угол CDK=90, 2угла CDK-90+угол CDK=90, 3 угла CDK=180,
Угол CDK=60, угол KCD=30. Катет KD лежит против угла в 30 и он равен половине гипотенузы. CD=24, KD=12. Обозначим точку пересечения перпендиккляра с средней линией трапеции точкой N. NF- средняя линия треугольника CKD. NF=1/2KD=12:2=6. EN=BC=9-6=3,
AD=BC+KD=3+12=15.
ответ: AD=12, BC=3.