Дві площини паралельні між собою. Із точки К, що не лежить у цих площинах або між ними, проведено дві прямі, які перетинають ці площини відповідно в точках А1 і А2 та В1 і В2. КА1 = 3см, В1В2 = 12 см, А1А2 = КВ1. Знайдіть КА2
Ниже прикреплю рисунок, не знаю на сколько он правильный
Многоугольником называется фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек. Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины. Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине. Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника. Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О. Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°. В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360° Таким образом, сумма всех внутренних углов многоугольника равна n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле , где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков. 10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота. Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту. По теореме Пифагора: SC²=SO²+OC² 13²=SO²+5² SO²=169-25 SO²=144 SO=12 см
Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины.
Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.
Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника.
Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О.
Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°.
В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360°
Таким образом, сумма всех внутренних углов многоугольника равна
n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле
, где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков.
10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота.
Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту.
По теореме Пифагора:
SC²=SO²+OC²
13²=SO²+5²
SO²=169-25
SO²=144
SO=12 см