№2
Sabc=1/2 * АС*ВД
АС=6+4=10 см
ВД=ДС=4 см, т.к. ΔВДС - р/б; ∠С=45°; ∠СВД=90-45=45°
S=1/2 * 10 * 4=20 cм².
№3
Р=20 см; сторона а=5 см
Пусть х и у - половины диагоналей
х+у=14 : 2=7 см
Если одна половина диагонали = х, то вторая (7-х)
Рассм. один из 4-х маленьких прямоугольных треугольников, на которые диагонали делят ромб.
Катеты х и (7-х); гипотенуза а=5 см. По т.Пифагора
5²=х²+(7-х)²
х²+49-14х+х²-25=0
2х²-14х+24=0
х²-7х+12=0
D=49-4*1*12=1
х1=(7+1)/2=4 см, тогда у1=7-4=3 и наоборот.
Диагонали: 8 и 6 см
S=1/2 * 8 * 6=4*6=24 cм² - это ответ.
ответ:6
Объяснение:
Поскольку CD - высота, то угол CDA = 90°.
Рассмотрим получившийся прямоугольный треугольник. Поскольку нам известно, что угол СAD = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за x. Тогда гипотенуза АС равняется 2 * x.
Воспользуемся теоремой Пифагора:
(2 * x)^2 = x^2 + 18^2;
4 * x^2 - x^2 = 324;
3 * x^2 = 324;
x^2 = 108;
x = √108 = √(9 * 12) = 3 * √12 = 3 * √(4 * 3) = 3 * 2 * √3 = 6 * √3.
AC = 2 * 6 * √3 = 12 * √3
Рассмотрим прямоугольный треугольник АВС. Поскольку нам известно, что угол СAВ = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за y. Тогда гипотенуза АB равняется 2 * y.
(2 * y)^2 = y^2 + (12 * √3)^2;
4 * y^2 - y^2 = 12^2 * 3;
3 * y^2 = 144 * 3;
y^2 = 144;
y = 12.
AB = 2 * 12 = 24.
Значит:
BD = AB - AD = 24 - 18 = 6 см.
№2
Sabc=1/2 * АС*ВД
АС=6+4=10 см
ВД=ДС=4 см, т.к. ΔВДС - р/б; ∠С=45°; ∠СВД=90-45=45°
S=1/2 * 10 * 4=20 cм².
№3
Р=20 см; сторона а=5 см
Пусть х и у - половины диагоналей
х+у=14 : 2=7 см
Если одна половина диагонали = х, то вторая (7-х)
Рассм. один из 4-х маленьких прямоугольных треугольников, на которые диагонали делят ромб.
Катеты х и (7-х); гипотенуза а=5 см. По т.Пифагора
5²=х²+(7-х)²
х²+49-14х+х²-25=0
2х²-14х+24=0
х²-7х+12=0
D=49-4*1*12=1
х1=(7+1)/2=4 см, тогда у1=7-4=3 и наоборот.
Диагонали: 8 и 6 см
S=1/2 * 8 * 6=4*6=24 cм² - это ответ.
ответ:6
Объяснение:
Поскольку CD - высота, то угол CDA = 90°.
Рассмотрим получившийся прямоугольный треугольник. Поскольку нам известно, что угол СAD = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за x. Тогда гипотенуза АС равняется 2 * x.
Воспользуемся теоремой Пифагора:
(2 * x)^2 = x^2 + 18^2;
4 * x^2 - x^2 = 324;
3 * x^2 = 324;
x^2 = 108;
x = √108 = √(9 * 12) = 3 * √12 = 3 * √(4 * 3) = 3 * 2 * √3 = 6 * √3.
AC = 2 * 6 * √3 = 12 * √3
Рассмотрим прямоугольный треугольник АВС. Поскольку нам известно, что угол СAВ = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за y. Тогда гипотенуза АB равняется 2 * y.
Воспользуемся теоремой Пифагора:
(2 * y)^2 = y^2 + (12 * √3)^2;
4 * y^2 - y^2 = 12^2 * 3;
3 * y^2 = 144 * 3;
y^2 = 144;
y = 12.
AB = 2 * 12 = 24.
Значит:
BD = AB - AD = 24 - 18 = 6 см.