Sabc=48 cm²
Объяснение:
Пусть треугольник АВС и АС основание =12 см.
Пусть ВМ -высота, проведенная к основанию.
Пусть О центр вписанной окружности - находится на высоте ВМ, так как треугольник АВС равнобедренный.
Тогда АМ=МС= 12:2=6 см
АО- биссектриса угла О, так как центр вписанной окружности находится в точке пересечения биссектрис треугольника ( то есть на биссектрисе АО).
Тогда tg∡OAM = OM/AM= 3/6=1/2=0.5
Найдем tg∡ A= 2*tg∡OAM/(1-tg²∡AM)=
2*0.5/(1-1/4)=1/3*4=4/3
tg∡ A=4/3
=> BM/MA=4/3
BM=4/3*6 =8
Sabc=(AC*BM)/2= 12*8/2=48 cm²
Sabc=48 cm²
Объяснение:
Пусть треугольник АВС и АС основание =12 см.
Пусть ВМ -высота, проведенная к основанию.
Пусть О центр вписанной окружности - находится на высоте ВМ, так как треугольник АВС равнобедренный.
Тогда АМ=МС= 12:2=6 см
АО- биссектриса угла О, так как центр вписанной окружности находится в точке пересечения биссектрис треугольника ( то есть на биссектрисе АО).
Тогда tg∡OAM = OM/AM= 3/6=1/2=0.5
Найдем tg∡ A= 2*tg∡OAM/(1-tg²∡AM)=
2*0.5/(1-1/4)=1/3*4=4/3
tg∡ A=4/3
=> BM/MA=4/3
BM=4/3*6 =8
Sabc=(AC*BM)/2= 12*8/2=48 cm²