Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Правильный четырехугольник - квадрат.
a - сторона квадрата
a =Pк/4 =16/4 =4
Диагональ квадрата - диаметр описанной окружности.
2R =a√2 =4√2
b - сторона равностороннего треугольника
По теореме синусов
b/sin60 =2R => b =4√2 *√3/2 =2√6
Pт =3b =6√6 (см)
Или
Найдем длину хорды L по радиусу R и центральному углу Ф.
AOB=Ф, OA=OB=R
OH - высота, медиана, биссектриса
AB=2AH, AOH=Ф/2, sin(AOH)=AH/OA
L =AB =2R sin(Ф/2)
Вершины равностороннего треугольника делят окружность на три равные дуги.
Фт =360/3
Вершины квадрата делят окружность на четыре равные дуги.
Фк =360/4
Lт/Lк =sin(Фт/2) / sin(Фк/2) =sin60/sin45 =√3/√2
Pт/Pк =3Lт/4Lк
Pт =16 *3/4 *√3/√2 =6√6 (см)