Объяснение:Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
Если высота проведена из вершины с прямым углом к гипотенузе, то треугольник делится на два меньших треугольника, подобных исходному и подобных друг другу. Из этого много чего следует, в том числе соотношения: h=a*b/c и h²=d*e, где h - высота, a,b и c - катеты и гипотенуза, d и e - отрезки гипотенузы, на которые она делится высотой. Учитывая это, находим катеты по Пифагору: с²=2500 = 16х²+9х², откуда х=10. Итак, катеты равны 40 и 30. Тогда h = 40*30/50 = 24. h² = х*(50-х), откуда х²-50х+576 =0, а х = 25±7 Х1 = 32 Х2 = 18. Это и есть ответ.
Объяснение:Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
S_bok=1/2 Pa
Учитывая это, находим катеты по Пифагору: с²=2500 = 16х²+9х², откуда х=10.
Итак, катеты равны 40 и 30. Тогда h = 40*30/50 = 24.
h² = х*(50-х), откуда х²-50х+576 =0, а х = 25±7
Х1 = 32
Х2 = 18.
Это и есть ответ.