Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
Трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
Сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
Пусть длина меньшего основания а . Тогда длина большего - 8-а.
Средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
Площадь трапеции равна полусумме оснований, умноженной на высоту.
Пусть высота каждой части трапеции равна h.
Тогда площадь верхней трапеции будет (а+4)•h:2,
а площадь большей (8-а+4)•h:2=(12-а)•h:2
По условию отношение этих площадей равно 5/11⇒
[ (а+4)•h:2]:[ (12-а)•h:2]=5/11
Отсюда 60-5а=11а+44
16а=16
а=1
Меньшее основание =1(ед. длины)
Большее 8-1=7 (ед. длины.
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.