Треугольник ABC, угол C = 90°, угол A = 60°, биссектриса AD = 8 см.
Найти:
CB = ?
1. Угол CAD = Угол BAD = 60/2 = 30°.
2. Треугольник ACD: угол C = 90°, угол A = 30°, AD = 8 см., CD = 4 см. (т.к. в прямоугольном треугольнике, катет, лежащий напротив угла в 30° равен половине гипотенузе).
3. Треугольник ABC: угол C = 90°, угол A = 60°, угол B = 90° - 60° = 30°.
4. Треугольник ABD: угол DAB = ABD = 30°, следовательно треугольник ABD - равнобедренный, следовательно AD = DB = 8 см.
Дано:
Треугольник ABC, угол C = 90°, угол A = 60°, биссектриса AD = 8 см.
Найти:
CB = ?
1. Угол CAD = Угол BAD = 60/2 = 30°.
2. Треугольник ACD: угол C = 90°, угол A = 30°, AD = 8 см., CD = 4 см. (т.к. в прямоугольном треугольнике, катет, лежащий напротив угла в 30° равен половине гипотенузе).
3. Треугольник ABC: угол C = 90°, угол A = 60°, угол B = 90° - 60° = 30°.
4. Треугольник ABD: угол DAB = ABD = 30°, следовательно треугольник ABD - равнобедренный, следовательно AD = DB = 8 см.
5. CB = CD + DB, CB = 4 + 8 = 12 см.
12 см.
ответ: а) 42,5 см.
Объяснение:
Периметр треугольника по таким данным задачи зависит от того чему равно основание. То есть имеет место два варианта:
1 вариант. Если основание (АС) равно 17 см. Такой треугольник не существует. 8,5+8,5=17 ?
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0), где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
В нашем случае a+b=с, что недопустимо.
***
2 вариант. Основание АС =8,5 см.
Тогда Р=АВ+ВС+АС=2*17+8,5= 42,5 см.