2 Так как трапеция равнобедренная, то углы при её основании равны. Что при большем, что при меньшем основании. Тогда получаем 2 пары углов: одна пара равных острых углов (при большем основании), вторая пара равных тупых углов (при меньшем основании).
Пусть α - больший угол, β - меньший (для определенности)
Сумма углов четырехугольника равна 360°
α+α+β+β=360° ⇒ 2(α+β)=360° ⇒ α+β=180° (это же можно было сразу сказать, если учесть, что основания параллельны, а боковая сторона - секущая, а α и β являются односторонними углами, сумма которых, как известно, равна 180°).
1н айдем периметр треугольника из средних линий
6+9+10=25
периметр исходного в 2 раза больше 25*2=50
2 Так как трапеция равнобедренная, то углы при её основании равны. Что при большем, что при меньшем основании. Тогда получаем 2 пары углов: одна пара равных острых углов (при большем основании), вторая пара равных тупых углов (при меньшем основании).
Пусть α - больший угол, β - меньший (для определенности)
Сумма углов четырехугольника равна 360°
α+α+β+β=360° ⇒ 2(α+β)=360° ⇒ α+β=180° (это же можно было сразу сказать, если учесть, что основания параллельны, а боковая сторона - секущая, а α и β являются односторонними углами, сумма которых, как известно, равна 180°).
α=180°-72°=108°
То есть 2 угла по 108°, 2 угла по 72°.
ответ: 72°, 72°, 108°, 108°.
Правильная пирамида
- в основании правильный многоугольник (ABCD - квадрат)
- боковые ребра равны, вершина проецируется в центр описанной окружности основания (H - пересечение диагоналей квадрата)
DC||AB => DC||(KAB)
Плоскость (SDC) проходит через прямую DC, параллельную плоскости (KAB), следовательно линия пересечения плоскостей KP параллельна DC.
a) Плоскость (KAB) пересекает грань SDC по прямой KP.
Пусть KP пересекает SN в точке E.
KE - средняя линия в △DSN по признаку (K - середина SD, KP||DC), E - середина SN.
б) KP||DC||AB => KP||(ABS)
Все точки прямой KP равноудалены от плоскости (ABS).
Найдем расстояние от E до (ABS).
Рассмотрим плоскость (SHN).
H - середина AC, HN - средняя линия в △ACD => MN||AD, M - середина AB (т Фалеса)
SM - медиана и высота (△ASB - р/б), SM⊥AB
SH⊥(ABC) => SH⊥AB
=> AB⊥(SMN) (AB перпендикулярна двум пересекающимся прямым в плоскости)
Опустим перпендикуляр EF на SM.
AB⊥(SMN) => EF⊥AB
=> EF⊥(ABS), EF - искомое расстояние.
SH=15, MN=AD=16, MH=8 (H - середина MN)
S(MSN) =1/2 MN*SH =120
E - середина SN, ME - медиана => S(MSE) =1/2 S(MSN)
SM =√(MH^2+SH^2) =17
S(MSE) =1/2 SM*EF =1/2 S(MSN) => EF*17=120 => EF=120/17