В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
asatuchina1502
asatuchina1502
31.03.2023 15:42 •  Геометрия

Доклад по теме: интересные названия городов айского края

Показать ответ
Ответ:
aska13aska
aska13aska
23.02.2020 08:07

Основание пирамиды прямоугольник со сторонами 6 и 15. Высота пирамиды 4. Найти площадь боковой поверхности пирамиды.

ответ: 126 (ед. площади)

Объяснение:

Обозначим пирамиду SABCD. Поскольку нет дополнительных данных, можно допустить, что её вершина проецируется в точку пересечения диагоналей (средних линий) прямоугольника.

 Пусть  стороны AD=BC=6, AB=CD=15. Точка О - проекция вершины на основание.  Высота SО=4 см.   

Боковые  ребра данной пирамиды равны, т.к. их. проекции  - равные  половины равных диагоналей прямоугольника.  

 Высоты SМ и SН боковых граней  перпендикулярны сторонам основания, их проекции по т. о 3-х перпендикулярах перпендикулярны сторонам основания, параллельны соответствующим сторонам прямоугольника  и равны их половине. ОМ=СВ:2=3, ОН=АВ:2=7,5.

 Из прямоугольного ∆ SОН по т.Пифагора  SH=√(SO²+OH²)=√(16+9)=5

Из прямоугольного ∆ SОМ по т.Пифагора  SM=√(SO²+OM²)=√(4²+7,5²)=8,5  

S (ASD)=S(BSD)=8,5•6/2=25,5

S (ASB)=S(SDC)=5•15/2=37,5

Ѕ(бок)=2(25,5+37,5)=126 ( ед. площади)


Основою піраміди є прямокутник зі сторонами 6 і 15 , висота піраміди 4 . знайти sбічне піраміди
0,0(0 оценок)
Ответ:
матиматик13
матиматик13
04.06.2022 16:54

1. По заданным катетам а и b определить биссектрису прямого утла.

Решение.

S S S ; ∆ABC = ∆BCD + ∆ACD

sin 45 ; 2

1 sin 45

2

1

2

1 = ° + ° ab alc blc

ab l sin 45 (a b); = c ° +

( ) . 2

sin 45 a b

ab

a b

ab lc + = + ° =

2. В прямоугольном треугольнике биссектриса острого угла делит противоположный

катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.

Решение.

5

4 = c

b (на основании свойства биссектрисы внутреннего

угла треугольника).

Но ; 81 2 2

c − b =

12,

5

4

81, 2 2

⇒ =

=

− =

b

c

b

c b

9 12 54 см . 2

1

2

1 S 2 = ab = ⋅ ⋅ =

3. Найти площадь прямоугольного треугольника, если даны радиусы R и r описанного и

вписанного в него кругов.

Решение.

Известно, что в прямоугольном треугольнике

. 2

1

a + b = 2R + 2r, S = ab

Возведем в квадрат:

2 ( ) 2 2 , 4S 4( ) , 2 2 2 2 2

a + b + ab = R + r c + = R + r

но 2 , 4 4S 4( ) , S 2 . 2 2 2

c = R R + = R + r = Rr + r

4. В прямоугольном треугольнике высота, проведенная к гипотенузе, делит треугольник

на два треугольника с площадями 384 и 216 см2

. Найти гипотенузу.

Решение.

, 2

1

2

1 c ab = ch

, 2 600 1200

hc hc hc

ab

c = ⋅ = =

216 384. 4

1

384, 2

1

216, 2

1

2 = ⋅

=

=

×

c c c

c c

c c

a b h

b h

a h

Но 216 384, 4

1 , , 2 4 = = = ⋅ hc acbc hc acbc hc

50 см. 24

1200 4 6 66 6 4 4 4, 4 6 24, 4 hc = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ hc = ⋅ = c = =

5. В треугольнике известны длины двух сторон — 6 и 3 см. Найти длину третьей

стороны, если полусумма высот, проведенных к данным сторонам, равна третьей высоте.

Решение.

а=6см, b=3см, , 2 , 2 c a b c

a b h h h h h h = + = +

, 4. 2

3

1

6

1 , 1 1 2 , 2S 2 2S 2S

+ = + = + = c = a b c a b c c

6. Трапеция разделена диагоналями на четыре части. Определить ее площадь, если

известны площади ее частей, прилежащих к основаниям S1 и S2.

Решение.

1. S3 = S4 (доказать самостоятельно).

2. sin α, 2

1 S1 = BM ⋅ MC ⋅

sin α, sin( ) 180 α sin α, 2

1 S2 = AM ⋅ MD ⋅ ° − =

sin α. 4

1 S S 2

1 2 = AM ⋅ BM ⋅ MC ⋅ MD ⋅

3. sin α, 2

1 S3 = AM ⋅ BM ⋅ sin α, 2

1 S4 = CM ⋅ MD ⋅

sin α S S S S , 4

1 S S 1 2 3 4

2

3 4 = AM ⋅ BM ⋅ MC ⋅ MD ⋅ ⇒ =

S S S S , S S S 2 S S ( S S ) .

2

3 = 4 = 1 2 ABCD = 1 + 2 + 1 2 = 1 + 2

7. Стороны треугольника 13, 14, 15см. Определить площадь и радиусы описанной (R) и

вписанной (r) окружностей.

Решение.

( )( )( ) 21, 2

13 14 15

2

S , = + + = + + = − − − = a b c

p p a p b p c p

S 21 8 7 6 3 7 2 2 2 7 2 3 2 2 3 7 84с ,

2 = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = м

м

p

r

abc R 4с

21

S 2 2 3 7

см 8

65

4 2 2 3 7

13 14 15

4S = ⋅ ⋅ ⋅ = = = ⋅ ⋅ ⋅ ⋅

⋅ ⋅ = =

8. По трем высотам треугольника ha, hb, hc вычислить его площадь.

Решение.

S = p( )( )( ) p − a p − b p − c =

= + − ⋅ + − ⋅ + − ⋅ + + = 2 2 2 2

a b c b c a a c b a b c

= 

+ − 

+ − 

+ − 

 = + +

a b c b c a a c b b b c h h h h h h h h h h h h

S S S S S S S S S S S S

, 1 1 1 1 1 1 1 1 1 1 1 1 S2

+ − 

+ − 

+ − 

 = + +

a b c b c a a c b b b c h h h h h h h h h h h h

, 1 1 1 1 1 1 1 1 1 1 1 1

S

1

+ − 

+ − 

+ − 

 = + +

a b c b c a a c b b b c h h h h h h h h h h h h

. 1 1 1 1 1 1 1 1 1 1 1 1 S

2

1 −

+ − 

+ − 

+ − 

 = + +

a b c b c a a c b b b c h h h h h h h h h h h h

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота