1. 15 см.
2. 32 см, 40 см.
3. 34 см.
4. ???
5. 34 см.
6. 14 см.
Объяснение:
1. Отрезки соединяющие середины сторон треугольника являются его средними линиями и равны половине стороны ей параллельной.
Получим треугольник А1В1С1.
Р(АВС)=8+10+12=30 см.
Р(А1В1С1)=Р(АВС)/2=30/2=15 см.
***
2. MN - средняя линия трапеции. MN=(ВС+AD)/2=36;
Пусть ВС=4х. Тогда AD=5x.
(4x+5x)/2=36;
9x=72;
x=8.
ВС=4х=4*8=32 см.
AD=5x=5*8=40 см.
Проверим:
MN=(32+40)/2=72/2=36 см. Всё верно!
3. В трапецию можно вписать окружность, если сумма оснований равна сумме его боковых сторон.
АВ+CD=BC+AD=P/2.
BC+AD=P/2;
5+12=P/2;
17=P/2;
P=17*2=34 см.
5. ∠BAC=∠DAC- AC — биссектриса .
∠BCA=∠DAC (как внутренние накрест лежащие при AD ∥ BC и секущей AC). Значит, ∠BAC=∠BCA ; треугольник ABC — равнобедренный с основанием AC. АВ=CD=8 см.
Р(АВСD)=8+10+8+8=34 см.
6. Если в трапеции диагонали перпендикулярны, то ее высота равна средней линии. ВЕ=MN=(BC+AD)/2.
BC+AD=2MN=2*10 =20 см .
Высота H=10 см.
Р(ABCD)=48 см.
Р=2AB+ВС+AD.
2AB=48-20=28.
АВ=CD=28/2=14 см.
110°
1) NH - медиана ΔTNQ ⇒ по свойству медианы TH=HQ.
По условию MT=QK ⇒ МH=HK, т.к. сумма равных отрезков даёт в итоге равные отрезки: MT+TH = QK+HQ. ⇒ NH - медиана ΔMNK.
По условию задачи NH - высота ΔMNK.
⇒ ΔMNK - равнобедренный, что и требовалось доказать.
ΔTNQ также равнобедренный, т.к. NH - медиана и высота.
2) ∠2 + ∠1 − ∠4 = 30°
∠2=∠1, т.к. у равнобедренного ΔTNQ углы при основании равны.
По свойству смежных углов: ∠4 = 180°-∠2 , но ∠2=∠1, поэтому ∠4=180°-∠1
⇒ ∠1+∠1-(180°-∠1)=30°
3*∠1=30°+180°
3*∠1=210°
∠1=70°
По свойству смежных углов: ∠3=180°-∠1=180°-70°=110°
1. 15 см.
2. 32 см, 40 см.
3. 34 см.
4. ???
5. 34 см.
6. 14 см.
Объяснение:
1. Отрезки соединяющие середины сторон треугольника являются его средними линиями и равны половине стороны ей параллельной.
Получим треугольник А1В1С1.
Р(АВС)=8+10+12=30 см.
Р(А1В1С1)=Р(АВС)/2=30/2=15 см.
***
2. MN - средняя линия трапеции. MN=(ВС+AD)/2=36;
Пусть ВС=4х. Тогда AD=5x.
(4x+5x)/2=36;
9x=72;
x=8.
ВС=4х=4*8=32 см.
AD=5x=5*8=40 см.
Проверим:
MN=(32+40)/2=72/2=36 см. Всё верно!
***
3. В трапецию можно вписать окружность, если сумма оснований равна сумме его боковых сторон.
АВ+CD=BC+AD=P/2.
BC+AD=P/2;
5+12=P/2;
17=P/2;
P=17*2=34 см.
***
4. ???
***
5. ∠BAC=∠DAC- AC — биссектриса .
∠BCA=∠DAC (как внутренние накрест лежащие при AD ∥ BC и секущей AC). Значит, ∠BAC=∠BCA ; треугольник ABC — равнобедренный с основанием AC. АВ=CD=8 см.
Р(АВСD)=8+10+8+8=34 см.
***
6. Если в трапеции диагонали перпендикулярны, то ее высота равна средней линии. ВЕ=MN=(BC+AD)/2.
BC+AD=2MN=2*10 =20 см .
Высота H=10 см.
Р(ABCD)=48 см.
Р=2AB+ВС+AD.
2AB=48-20=28.
АВ=CD=28/2=14 см.
110°
Объяснение:
1) NH - медиана ΔTNQ ⇒ по свойству медианы TH=HQ.
По условию MT=QK ⇒ МH=HK, т.к. сумма равных отрезков даёт в итоге равные отрезки: MT+TH = QK+HQ. ⇒ NH - медиана ΔMNK.
По условию задачи NH - высота ΔMNK.
Если в треугольнике медиана и высота, проведённые к одной стороне, совпадают, то этот треугольник равнобедренный.⇒ ΔMNK - равнобедренный, что и требовалось доказать.
ΔTNQ также равнобедренный, т.к. NH - медиана и высота.
2) ∠2 + ∠1 − ∠4 = 30°
∠2=∠1, т.к. у равнобедренного ΔTNQ углы при основании равны.
По свойству смежных углов: ∠4 = 180°-∠2 , но ∠2=∠1, поэтому ∠4=180°-∠1
⇒ ∠1+∠1-(180°-∠1)=30°
3*∠1=30°+180°
3*∠1=210°
∠1=70°
По свойству смежных углов: ∠3=180°-∠1=180°-70°=110°