Рассмотрим треугольники AOD и COB.
AO=OC
BO=OD
∠AOD=∠COB (вертикальные)
Значит, треугольники AOD и COB равны (по двум сторонам и углу между ними).
∠ADO=∠CBO (если треугольники равны, то и соответствующие углы тоже равны). Эти углы — внутренние накрест лежащие при прямых AD и BC и секущей BD.
AD∥BC (по признаку параллельных прямых)
AOB=COD, ∠ABO=∠CDO и AB∥CD (аналогично треугольникам AOD и COB.
Доказали, что AD∥BC и AB∥CD
Значит, ABCD — параллелограмм (по определению)
Доказательство:
Рассмотрим треугольники AOD и COB.
AO=OC
BO=OD
∠AOD=∠COB (вертикальные)
Значит, треугольники AOD и COB равны (по двум сторонам и углу между ними).
∠ADO=∠CBO (если треугольники равны, то и соответствующие углы тоже равны). Эти углы — внутренние накрест лежащие при прямых AD и BC и секущей BD.
AD∥BC (по признаку параллельных прямых)
AOB=COD, ∠ABO=∠CDO и AB∥CD (аналогично треугольникам AOD и COB.
Доказали, что AD∥BC и AB∥CD
Значит, ABCD — параллелограмм (по определению)