1)1/2 аh= 1/2 6*12=36
2)а=6 см
b=8 см
с - ? см
S - ? см²
по теореме Пифагора:
где а, b - катеты, с - гипотенуза
(cм) - гипотенуза Δ
(см²)
ответ: 10 см гипотенуза Δ; 24 см² площадь
3)S ромба= (d1•d2)/2=(10•6)/2=60/2=30
4) Треуг. СНК-прямоуг.,равноб. Уг. Н=90 град., СН=НК, тк Уг К=45 и уг С = 45.
Путь НК=х, тогда СН тоже = х. По теорем Пифагора СК в кв=СН в кв + НК в кв
(3 корн из 2) в кв = х в кв + х в кв
2х в кв = 9*2
2х в кв = 18
х в кв=9
х=3
х=-3(не уд усл.)
Таким ообразом НК и СН = 3см
Тк СН делит АК пополам, АК = 2НК=3*2=6 см.
ВС=АН=3 см.
площадь = (ВС+АК)/2 * СН = 13.5 см в кв
1. АО = ОС по условию,
ВО = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
2. NK = KP по условию,
∠MNK = ∠EPK по условию,
∠MKN = ∠ЕКР как вертикальные, ⇒
ΔMKN = ΔЕКР по стороне и двум прилежащим к ней углам.
3. АВ = AD по условию,
∠ВАС = ∠DAC по условию,
АС - общая сторона для треугольников ВАС и DAC, ⇒
ΔВАС = ΔDAC по двум сторонам и углу между ними.
4. ВС = AD по условию,
∠CBD = ∠ADB по условию,
BD - общая сторона для треугольников CBD и ADB, ⇒
ΔCBD = ΔADB по двум сторонам и углу между ними.
5. ∠MDF = ∠EDF по условию,
∠MFD = ∠EFD по условию,
DF - общая сторона для треугольников MDF и EDF, ⇒
ΔMDF = ΔEDF по стороне и двум прилежащим к ней углам.
6.
а) ∠МАВ = ∠NBA по условию,
∠МВА = ∠NAB по условию,
АВ - общая сторона для треугольников МАВ и NBA, ⇒
ΔМАВ = ΔNBA по стороне и двум прилежащим к ней углам.
б) АМ = BN из равенства ΔМАВ = ΔNBA (см. п. а))
∠АМН = ∠ВNН из равенства ΔМАВ = ΔNBA,
∠МАН = ∠МАВ - ∠НАВ
∠NBH = ∠NBA - ∠HBA, а так как ∠МАВ = ∠NBA по условию и ∠НВА = ∠НAB по условию, то и
∠MAH = ∠NBH, ⇒
ΔMAH = ΔNBH по стороне и двум прилежащим к ней углам.
7. МК = PN по условию,
MN = PK по условию,
NK - общая сторона для треугольников MNK и PKN, ⇒
ΔMNK = ΔPKN по трем сторонам.
8. ∠ABD = ∠CDB по условию,
∠ADB = ∠CBD по условию,
BD - общая сторона для треугольников ABD и CDB , ⇒
ΔABD = ΔCDB по стороне и двум прилежащим к ней углам.
9. ∠САВ = ∠EFD по условию,
∠АВС = ∠EDF по условию,
АВ = AD + DB
FD = FB + DB, а так как AD = BF по условию, то и
АВ = FD, ⇒
ΔСАВ = ΔEFD по стороне и двум прилежащим к ней углам.
10.
а) АС = ВС по условию,
∠СВЕ = ∠CAD по условию,
угол при вершине С - общий для треугольников СВЕ и CAD, ⇒
ΔСВЕ = ΔCAD по стороне и двум прилежащим к ней углам.
б) ∠ADC = ∠BEC из равенства треугольников СВЕ и CAD, ⇒
∠BDF = ∠AEF как смежные с равными углами,
∠DBF = ∠EAF по условию,
BD = BC - DC
AE = AC - EC, а так как ВС = АС по условию, и DC = EC из равенства треугольников СВЕ и CAD, то и BD = AE, ⇒
ΔBDF = ΔAEF по стороне и двум прилежащим к ней углам.
11. КН = ЕН по условию,
FK = PE по условию,
∠FKH = ∠PEH как смежные с равными углами, ⇒
ΔFKH = ΔPEH по двум сторонам и углу между ними.
12. DE = CE по условию,
∠ADE = ∠BCE как смежные с равными углами,
∠AED = ∠BEC как вертикальные, ⇒
1)1/2 аh= 1/2 6*12=36
2)а=6 см
b=8 см
с - ? см
S - ? см²
по теореме Пифагора:
где а, b - катеты, с - гипотенуза
(cм) - гипотенуза Δ
(см²)
ответ: 10 см гипотенуза Δ; 24 см² площадь
3)S ромба= (d1•d2)/2=(10•6)/2=60/2=30
4) Треуг. СНК-прямоуг.,равноб. Уг. Н=90 град., СН=НК, тк Уг К=45 и уг С = 45.
Путь НК=х, тогда СН тоже = х. По теорем Пифагора СК в кв=СН в кв + НК в кв
(3 корн из 2) в кв = х в кв + х в кв
2х в кв = 9*2
2х в кв = 18
х в кв=9
х=3
х=-3(не уд усл.)
Таким ообразом НК и СН = 3см
Тк СН делит АК пополам, АК = 2НК=3*2=6 см.
ВС=АН=3 см.
площадь = (ВС+АК)/2 * СН = 13.5 см в кв
1. АО = ОС по условию,
ВО = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
2. NK = KP по условию,
∠MNK = ∠EPK по условию,
∠MKN = ∠ЕКР как вертикальные, ⇒
ΔMKN = ΔЕКР по стороне и двум прилежащим к ней углам.
3. АВ = AD по условию,
∠ВАС = ∠DAC по условию,
АС - общая сторона для треугольников ВАС и DAC, ⇒
ΔВАС = ΔDAC по двум сторонам и углу между ними.
4. ВС = AD по условию,
∠CBD = ∠ADB по условию,
BD - общая сторона для треугольников CBD и ADB, ⇒
ΔCBD = ΔADB по двум сторонам и углу между ними.
5. ∠MDF = ∠EDF по условию,
∠MFD = ∠EFD по условию,
DF - общая сторона для треугольников MDF и EDF, ⇒
ΔMDF = ΔEDF по стороне и двум прилежащим к ней углам.
6.
а) ∠МАВ = ∠NBA по условию,
∠МВА = ∠NAB по условию,
АВ - общая сторона для треугольников МАВ и NBA, ⇒
ΔМАВ = ΔNBA по стороне и двум прилежащим к ней углам.
б) АМ = BN из равенства ΔМАВ = ΔNBA (см. п. а))
∠АМН = ∠ВNН из равенства ΔМАВ = ΔNBA,
∠МАН = ∠МАВ - ∠НАВ
∠NBH = ∠NBA - ∠HBA, а так как ∠МАВ = ∠NBA по условию и ∠НВА = ∠НAB по условию, то и
∠MAH = ∠NBH, ⇒
ΔMAH = ΔNBH по стороне и двум прилежащим к ней углам.
7. МК = PN по условию,
MN = PK по условию,
NK - общая сторона для треугольников MNK и PKN, ⇒
ΔMNK = ΔPKN по трем сторонам.
8. ∠ABD = ∠CDB по условию,
∠ADB = ∠CBD по условию,
BD - общая сторона для треугольников ABD и CDB , ⇒
ΔABD = ΔCDB по стороне и двум прилежащим к ней углам.
9. ∠САВ = ∠EFD по условию,
∠АВС = ∠EDF по условию,
АВ = AD + DB
FD = FB + DB, а так как AD = BF по условию, то и
АВ = FD, ⇒
ΔСАВ = ΔEFD по стороне и двум прилежащим к ней углам.
10.
а) АС = ВС по условию,
∠СВЕ = ∠CAD по условию,
угол при вершине С - общий для треугольников СВЕ и CAD, ⇒
ΔСВЕ = ΔCAD по стороне и двум прилежащим к ней углам.
б) ∠ADC = ∠BEC из равенства треугольников СВЕ и CAD, ⇒
∠BDF = ∠AEF как смежные с равными углами,
∠DBF = ∠EAF по условию,
BD = BC - DC
AE = AC - EC, а так как ВС = АС по условию, и DC = EC из равенства треугольников СВЕ и CAD, то и BD = AE, ⇒
ΔBDF = ΔAEF по стороне и двум прилежащим к ней углам.
11. КН = ЕН по условию,
FK = PE по условию,
∠FKH = ∠PEH как смежные с равными углами, ⇒
ΔFKH = ΔPEH по двум сторонам и углу между ними.
12. DE = CE по условию,
∠ADE = ∠BCE как смежные с равными углами,
∠AED = ∠BEC как вертикальные, ⇒