Есть 2 линии (прямые) как геометрическое место точек, равноудалённых от осей координат: у = х и у = -х. Отрезок, равный расстоянию от заданной точки (10; 0) находится на перпендикулярах к указанным прямым. Уравнения этих перпендикуляров: у = -х +10 и у = х - 10. Координаты искомых точек найдём как точки пересечения прямых: у = х и у = -х + 10. х = -х + 10. 2х = 10. х = 10/2 = 5. у = 5. у = -х и у = х - 10. -х = х - 10. 2х = 10. х = 10/2 = 5. у = -5.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Отрезок, равный расстоянию от заданной точки (10; 0) находится на перпендикулярах к указанным прямым.
Уравнения этих перпендикуляров: у = -х +10 и у = х - 10.
Координаты искомых точек найдём как точки пересечения прямых:
у = х и у = -х + 10. х = -х + 10. 2х = 10. х = 10/2 = 5.
у = 5.
у = -х и у = х - 10. -х = х - 10. 2х = 10. х = 10/2 = 5.
у = -5.
ответ: 2 точки (5; 5) и (5; -5).
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.