В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
VETALmc005
VETALmc005
17.03.2022 20:59 •  Геометрия

Докажите что в прямоугольном треугольнике с катетами a и b и с гипотенузой c a^3+b^3

Показать ответ
Ответ:
Павлик8089
Павлик8089
01.10.2020 19:08
Пусть a^3 + b^3 >= c^3.

Возведём неравенство в квадрат:
a^6 + b^6 + 2a^3 b^3 >= c^6

Так как (x + y)^3 = x^3 + y^3 + 3xy(x + y), то
(a^2 + b^2)^3 + 2a^3 b^3 - 3a^2 b^2(a^2 + b^2) >= c^6

Теорема Пифагора: a^2 + b^2 = c^2

с^6 + 2a^3 b^3 - 3a^2 b^2 c^2 >= c^6
2ab - 3(a^2 + b^2) >= 0
3a^2 - 2ab + 3b^2 <=0
(a^2 - 2ab + b^2) + 2a^2 + 2b^2 <=0
(a - b)^2 + 2a^2 + 2b^2 <=0

Из последнего неравенство следует, что a = b = 0, чего быть не может. Противоречие.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота