Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Определение: "Правильная пирамида — это пирамида, основанием которой является правильный многоугольник, а вершина пирамиды проецируется в центр этого многоугольника. Высота боковой грани, проведенная из вершины правильной пирамиды, называется апофемой, боковые ребра равны, боковые грани равны (все являются равнобедренными треугольниками)". Следовательно, углы наклона боковых ребер к основанию равны - это углы между ребром и высотой основания (правильного треугольника). Углы углы наклона боковых граней равны - это углы между апофемой и высотой основания. Высота правильного треугольника по формуле равна h=(√3/2)*a. Эта высота является и медианой, значит она делится точкой О (центром основания) в отношении 2:1, считая от вершины. ОС=(2/3)*h=(√3/3)*a. OH=(1/3)*h=(√3/6)*a. Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS: tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46. α=arctg(3,46). α ≈73,9° Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS: tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93. β=arctg(6,93). β ≈81,8°.
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
которой является правильный многоугольник, а вершина пирамиды
проецируется в центр этого многоугольника. Высота боковой грани,
проведенная из вершины правильной пирамиды,
называется апофемой, боковые ребра равны, боковые грани равны
(все являются равнобедренными треугольниками)".
Следовательно, углы наклона боковых ребер к основанию равны -
это углы между ребром и высотой основания (правильного треугольника).
Углы углы наклона боковых граней равны - это углы между апофемой
и высотой основания.
Высота правильного треугольника по формуле равна h=(√3/2)*a.
Эта высота является и медианой, значит она делится точкой О
(центром основания) в отношении 2:1, считая от вершины.
ОС=(2/3)*h=(√3/3)*a.
OH=(1/3)*h=(√3/6)*a.
Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS:
tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46.
α=arctg(3,46). α ≈73,9°
Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS:
tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93.
β=arctg(6,93). β ≈81,8°.