Один із кутів отриманих при перетині дорівнює третині суміжних кутів знайдіть їх усіх!
ответ
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
2. Розв'яжіть нерівність
А. (−∞;−25)
Б. (−∞;−1)
В. (−∞; 25)
Г. (−1;+∞)
Д. (−25;+∞)
Розв'зання: Домножимо ліву і праву частину нерівності на 5:
-x>25
Домноживши праву та ліву частину нерівності на (-1), пам'ятаючи про знак:
x<-25;
Зрозуміло, що x<-25, тобто А.
Відповідь: А. (−∞;−25)
Автор: Евгений Ткаченко на понедельник, апреля 10, 2017 Комментариев нет:
Отправить по электронной почте
Написать об этом в блоге
Опубликовать в Twitter
Опубликовать в Facebook
Поделиться в Pinterest
зно 2017 пробне з математики № 1
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
1. Різниця двох кутів, отриманих при перетині двох прямих (див. рисунок), дорівнює 120∘. Визначте градусну міру кута α.
А. 30∘
Б. 100∘
В. 120∘
Г. 140∘
Д. 150∘
Розв'зання: При перетині двох прямих, утворюються суміжні та вертикальні кути. Оскільки різниця не 0,то кути не вертикальні, тобто суміжні. Нехай один кут х, тоді інший 120+х. Як відомо, сума суміжних кутів дорівнює 180 градусів. Тому складемо рівняння:
х+х+120=180
2х=180-120
2х=60
х=30, інший кут 120+30=150.
Як видно, з малюнка шуканий кут тупий, тому він деревню 150 градусів.
Основанием пирамиды является прямоугольный треугольник с катетом а и прилегающим к нему острым углом α. Две боковые грани, содержащие катеты этого треугольника, перпендикулярны плоскости основания, а третья наклонена к ней под углом β. Найдите объем пирамиды.
Пусть в данной пирамиде АВС - основание. угол С=90°, ВС=а, ∠АВС=α, MC⊥(ABC) – высота пирамиды. Угол между АВС и АМВ=β.
Формула объёма пирамиды V=S•H:3
Угол МНС - линейный угол угла между плоскостями основания и грани АМВ и равен углу между перпендикулярами, проведенными к одной точке на АВ.
МН - наклонная, перпендикулярна АВ, СН - её проекция на АВС.⇒ По т. о 3-х перпендикулярах угол СНВ=90°, а СН - высота ∆ АВС
Один із кутів отриманих при перетині дорівнює третині суміжних кутів знайдіть їх усіх!
ответ
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
2. Розв'яжіть нерівність
А. (−∞;−25)
Б. (−∞;−1)
В. (−∞; 25)
Г. (−1;+∞)
Д. (−25;+∞)
Розв'зання: Домножимо ліву і праву частину нерівності на 5:
-x>25
Домноживши праву та ліву частину нерівності на (-1), пам'ятаючи про знак:
x<-25;
Зрозуміло, що x<-25, тобто А.
Відповідь: А. (−∞;−25)
Автор: Евгений Ткаченко на понедельник, апреля 10, 2017 Комментариев нет:
Отправить по электронной почте
Написать об этом в блоге
Опубликовать в Twitter
Опубликовать в Facebook
Поделиться в Pinterest
зно 2017 пробне з математики № 1
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
1. Різниця двох кутів, отриманих при перетині двох прямих (див. рисунок), дорівнює 120∘. Визначте градусну міру кута α.
А. 30∘
Б. 100∘
В. 120∘
Г. 140∘
Д. 150∘
Розв'зання: При перетині двох прямих, утворюються суміжні та вертикальні кути. Оскільки різниця не 0,то кути не вертикальні, тобто суміжні. Нехай один кут х, тоді інший 120+х. Як відомо, сума суміжних кутів дорівнює 180 градусів. Тому складемо рівняння:
х+х+120=180
2х=180-120
2х=60
х=30, інший кут 120+30=150.
Як видно, з малюнка шуканий кут тупий, тому він деревню 150 градусів.
Відповідь: Д. 150∘
Відповідь:
Основанием пирамиды является прямоугольный треугольник с катетом а и прилегающим к нему острым углом α. Две боковые грани, содержащие катеты этого треугольника, перпендикулярны плоскости основания, а третья наклонена к ней под углом β. Найдите объем пирамиды.
Пусть в данной пирамиде АВС - основание. угол С=90°, ВС=а, ∠АВС=α, MC⊥(ABC) – высота пирамиды. Угол между АВС и АМВ=β.
Формула объёма пирамиды V=S•H:3
Угол МНС - линейный угол угла между плоскостями основания и грани АМВ и равен углу между перпендикулярами, проведенными к одной точке на АВ.
МН - наклонная, перпендикулярна АВ, СН - её проекция на АВС.⇒ По т. о 3-х перпендикулярах угол СНВ=90°, а СН - высота ∆ АВС
S=a•b•sinα:2 ⇒
S(АВС)=AB•BC•sinα:2
АВ=ВС:cosα=a:cosα
S(АВС)=(a:cosα)•a•sinα:2=a²sinα:2cosα
H=MC=CH•tgβ
CH=BC•sinα=a•sinα
H=a•sinα•tgβ
V=(a²•sinα:2cosα)•a•sinα•tgβ:3⇒
Пояснення: