Медиана делит сторону треугольника на 2 равные части. При построении трёх медиан в прямоугольном треугольнике, получится ещё 2 прямоугольных треугольника, но с другими катетами (медианы будут являться гипотенузами для каждого из этих треугольников) То есть применяя теорему Пифагора, получаем: (Медиана1)^2=a^2+(b/2)^2 (первая сторона делится на 2) (Медиана2)^2=(a/2)^2+b^2 (вторая сторона делится на 2) Но (Медиана3) вычисляется по свойствам прямоугольного треугольника (то есть не так как (Медиана1) и (Медиана2)) (Медиана3)^2=(c/2)^2=(a^2+b^2)/4 (то есть Медиана3=Половине гипотенузы, и одновременно является радиусом описанной окружности) Теперь осталось найти сумму трёх выражений: (a^2+(b/2)^2)+((a/2)^2+b^2)+((a^2+b^2)/4)=(a^2+b^2)*3/2=(3/2)*c^2 То есть при преобразовании снова применена теорема Пифагора.
Медиана делит сторону треугольника на 2 равные части.
При построении трёх медиан в прямоугольном треугольнике, получится ещё 2 прямоугольных треугольника, но с другими катетами (медианы будут являться гипотенузами для каждого из этих треугольников)
То есть применяя теорему Пифагора, получаем:
(Медиана1)^2=a^2+(b/2)^2 (первая сторона делится на 2)
(Медиана2)^2=(a/2)^2+b^2 (вторая сторона делится на 2)
Но (Медиана3) вычисляется по свойствам прямоугольного треугольника (то есть не так как (Медиана1) и (Медиана2))
(Медиана3)^2=(c/2)^2=(a^2+b^2)/4 (то есть Медиана3=Половине гипотенузы, и одновременно является радиусом описанной окружности)
Теперь осталось найти сумму трёх выражений:
(a^2+(b/2)^2)+((a/2)^2+b^2)+((a^2+b^2)/4)=(a^2+b^2)*3/2=(3/2)*c^2
То есть при преобразовании снова применена теорема Пифагора.