В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
kirill055
kirill055
07.06.2020 13:28 •  Геометрия

Докажите что четырехугольник abcd есть прямоугольником если а(-1; 2) в(-2; 1) с(1: -2) д(2; -1)

Показать ответ
Ответ:
Linkin251
Linkin251
07.10.2020 00:21
Достаточно доказать, что вектора АВ и ВС, АВ и AD, CD и ВС перпендикулярны
Для этого найдем координаты векторов:
АВ{Xb-Xa;Yb-Ya} или АВ{-2-(-1);1-2}. AB{-1;-1}
BC{1-(-2);-2-1} или ВС{3;-3}.
AD{2-(-1);-1-2} или AD{3;-3}.
СD{2-1;-1-(-2)} или CD{1;1}.
Вектора перпендикулярны, если их скалярное произведение равно нулю.
(AB*BC)=Xab*Xbc+Yab*Ybc = -3+3 =0. АВ перпендикулярен ВС.
(AB*AD)=Xab*Xad+Yab+Yad=-3+3=0. АВ перпендикулярен AD.
(BC*CD)=Xbc*Xcd+Ybc*Ycd}=3-3=0. CD перпендикулярен ВС.
Четырехугольник АВСD - прямоугольник.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота