В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Golovagolovin
Golovagolovin
25.09.2020 04:56 •  Геометрия

Докажите что биссектрисы углов произвольного прямоугольника при пересечении образуют квадрат !

Показать ответ
Ответ:
mslava150
mslava150
26.06.2020 06:54
Биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон. Это можно сделать многими например, так.
Квадрат отличается от произвольного прямоугольника тем, что симметричен относительно диагоналей. То есть он переходит в себя при зеркальном отражении относительно прямой, проходящей через противоположные вершины. 
Легко увидеть, что:
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон ИСХОДНОГО прямоугольника. 
Поскольку ИСХОДНЫЙ прямоугольник переходит в себя при отражении относительно этих прямых, то и ПОЛУЧЕННЫЙ при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
То есть это квадрат. 

Я напоминаю, что совпадение фигур при смещении, повороте или зеркальном отражении - это ОПРЕДЕЛЕНИЕ равенства. Самое первичное. Так сказать, наиглавнейшее. Поэтому это доказательство опирается только на определение равенства фигур и на свойства параллельных и секущей. 
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота