Цитаты: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Линейный угол - это угол, образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней. АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°. В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3. Поскольку МК=2КС , МК=2m/√3 или МК=2m√3/3.
<A+<KMC=180 Сумма углов в четырехугольнике равна 360,следовательно <C+<AKM=180 Если суммы противоположных углов равны,то вокруг четырехугольника можно описать окружность. <AKC=<AMC-опираются на одну дугу АС <KCM=<KAM-опираются на одну дугу KM <AOK=<COM-вертикальные,значит дуга АК равна дуге МС Следовательно <MAC=<KCA Значит <A=<C и <K=<M Отсюда ABCD равнобедренная трапеция,основания параллельны. ΔВАС тоже равнобедренный и АВ=АС Следовательно <BKM=<BAC,<BMK=<BCA-соответственные Тогда ΔBCA∞ΔKBM Отсюда KM/AC=BK/BC
АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°.
В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3.
Поскольку МК=2КС , МК=2m/√3 или МК=2m√3/3.
Сумма углов в четырехугольнике равна 360,следовательно <C+<AKM=180
Если суммы противоположных углов равны,то вокруг четырехугольника можно описать окружность.
<AKC=<AMC-опираются на одну дугу АС
<KCM=<KAM-опираются на одну дугу KM
<AOK=<COM-вертикальные,значит дуга АК равна дуге МС
Следовательно <MAC=<KCA
Значит <A=<C и <K=<M
Отсюда ABCD равнобедренная трапеция,основания параллельны.
ΔВАС тоже равнобедренный и АВ=АС
Следовательно <BKM=<BAC,<BMK=<BCA-соответственные
Тогда ΔBCA∞ΔKBM
Отсюда KM/AC=BK/BC