1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.
Объяснение: медианы точкой пересечения делятся в отношении 2:1, считая от вершины) т.к. медиана к основанию равнобедренного треугольника является и высотой треугольника (и биссектрисой), получим прямоугольный треугольник с катетом 16/3, гипотенузой 4V97/3 и второй катет=половине основания треугольника=
из другого прямоугольного треугольника с катетами 16 и 12 можно найти боковую сторону данного треугольника (она будет гипотенузой прямоугольного треугольника); легко заметить, что этот прямоугольный треугольник "египетский" (т.е. его стороны пропорциональны числам 3;4;5):
12=3*4; 16=4*4; гипотенуза будет =5*4=20 (см) и таких стороны две...
DM=3см, <BDC=25гр
Объяснение:
Странная задача, считать ничего и не надо.
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.
ответ: Р=20+20+24=64 (см)
Объяснение: медианы точкой пересечения делятся в отношении 2:1, считая от вершины) т.к. медиана к основанию равнобедренного треугольника является и высотой треугольника (и биссектрисой), получим прямоугольный треугольник с катетом 16/3, гипотенузой 4V97/3 и второй катет=половине основания треугольника=
V( (16*97/9)-(16*16/9) ) = V( (16/9)*(97-16) ) = (4/3)*9 = 12
и тогда основание треугольника =24 (см)
из другого прямоугольного треугольника с катетами 16 и 12 можно найти боковую сторону данного треугольника (она будет гипотенузой прямоугольного треугольника); легко заметить, что этот прямоугольный треугольник "египетский" (т.е. его стороны пропорциональны числам 3;4;5):
12=3*4; 16=4*4; гипотенуза будет =5*4=20 (см) и таких стороны две...