Доказать следующие утверждения:
Утверждение 1. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника).
Утверждение 2. Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1, считая от вершины треугольника.
Сделаем для наглядности рисунок.
Площадь и основание треугольника нам известны, найдем его высоту.
Опустим ее из вершины А к продолжению стороны ВС, точку пересечения обозначим Н.
Применим формулу нахождения площади треугольника
S=ah:2
из которой
h=2S:a=32:8=4 см
Ясно, что треугольник АНС - египетский, т.к. гипотенуза равна 5 см, один из катетов 4 см, и НС=3 см, это можно проверить по т. Пифагора.
Из прямоугольного треугольника АВН найдем искомую сторону АВ.
АВ²=АН²+ВН²= 4²+(8+3)²=16+121=137
АВ=√137=≈11,705 см
Другое решение верное, хотя и дало иной ответ, т.к. значения величины угла и его синуса и косинуса, найденные по таблицам, являются обычно приблизительными.