Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1. EF это средняя линия двух сторон треугольникаАВС => если ЕА=4 то ЕВ тоже = 4 , также и с ВС, FC=5 => BF =5. основание АС = 10, а т.к. EF это ср.линия то она равна половине АС то есть =5
2. здесь абсолютно тоже самое только на оборот.
MN=3 и это причём ср.линия то АС будет равен 6
MB=4, и если брать св-ва ср.линии то получается что АВ=8, также и с ВС, она будет равна 7 (3,5+3,5=7)
3. Вот тут уже действует правило: Р каждого маленького треугольника в 2 раза < Р большого треугольника. Исходя из этого правила РА¹В¹С¹= 20см.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1. 14см
2.21 см
3. 20 см
1. EF это средняя линия двух сторон треугольникаАВС => если ЕА=4 то ЕВ тоже = 4 , также и с ВС, FC=5 => BF =5. основание АС = 10, а т.к. EF это ср.линия то она равна половине АС то есть =5
2. здесь абсолютно тоже самое только на оборот.
MN=3 и это причём ср.линия то АС будет равен 6
MB=4, и если брать св-ва ср.линии то получается что АВ=8, также и с ВС, она будет равна 7 (3,5+3,5=7)
3. Вот тут уже действует правило: Р каждого маленького треугольника в 2 раза < Р большого треугольника. Исходя из этого правила РА¹В¹С¹= 20см.