Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Объяснение:
вот все правильно
Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр.
Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим).
Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.