Пусть из точки А провели две наклонные АВ и АС к прямой а. Расстояние от точки А до прямой а=ВС равно 16 см , тогда длина перпендикуляра АН, опущенного из точки А на прямую ВС = 16 см. Так как наклонные образуют углы в 30° и в 60°, то пусть ∠АВС=60°, а ∠АСВ= 30°. Треугольник АВС получится прямоугольным, т.к. ∠А=180°-30°-60°=90°. Рассм. ΔАВН: ∠АНВ=90°, АН=16 см, Наклонная АВ=АН:sin∠АВН=16:sin60°=16:(√3/2)=32:√3=(32√3)/3 . Проекция наклонной АВ равна ВН. BH=AH:tg60°=16:√3=(16√3)/3 . Рассм. ΔАСН: ∠АНС=90° , АН=16 см, Наклонная АС=АН:sin30°=16:(1/2)=32 / Проекция наклонной АС равна СН. СН=АН:tg30°=16:(√3/3)=(16*3):√3=16√3
Так как наклонные образуют углы в 30° и в 60°, то пусть ∠АВС=60°,
а ∠АСВ= 30°.
Треугольник АВС получится прямоугольным, т.к. ∠А=180°-30°-60°=90°.
Рассм. ΔАВН: ∠АНВ=90°, АН=16 см,
Наклонная АВ=АН:sin∠АВН=16:sin60°=16:(√3/2)=32:√3=(32√3)/3 .
Проекция наклонной АВ равна ВН.
BH=AH:tg60°=16:√3=(16√3)/3 .
Рассм. ΔАСН: ∠АНС=90° , АН=16 см,
Наклонная АС=АН:sin30°=16:(1/2)=32 /
Проекция наклонной АС равна СН.
СН=АН:tg30°=16:(√3/3)=(16*3):√3=16√3
По течению реки :
скорость V по теч. = (х+3) км/ч
расстояние S1= 8 км
время в пути t1= 8/(х+3) ч.
Против течения реки:
V против теч. =(х-3) км/ч
S2= 6 км
t2= 6/(х-3)
t1+t2 = 1 ч. 12 мин . = 1 12/60 ч. = 1,2 ч.
Уравнение.
8/(х+3) + 6/(х-3) = 1,2 |*(x-3)(x+3)
знаменатели не равны 0 :
х+3≠0 ⇒ х≠-3
x-3≠0 ⇒ x≠3
8(x-3) + 6(x+3) =1.2(x-3)(x+3)
8x- 24 + 6x +18 = 1.2(x² -9 )
14x - 6 = 1.2x²- 10.8
1.2x² -10.8 -14x +6=0
1.2x²-14x - 4.8 =0
D= (-14)² - 4*1.2 *(-4.8) = 196 + 23.04= 219.04=14.8²
x1= (14-14.8)/ (2*1.2) = -0.8/2.4 = -1/3 не удовл. условию задачи (скорость не может быть отрицательной величиной)
x2= (14+14.8) / 2.4 = 28.8/2.4= 12 (км/ч) собственная скорость лодки
ответ: 12 км/ч.