В треугольник со стороной 10 см и высотой 7 см, проведенной к этой стороне, вписан прямоугольник, стороны которого относятся как 4:7, причем меньшая сторона прямоугольника лежит на данной стороне треугольника. Найти стороны прямоугольника. --------- Сделаем рисунок треугольника АВС и вписанного прямоугольника ТМКО Треугольники МВК и АВС подобны - МК||АС, углы при основаниях равны по свойству параллельных прямых и секущей, и угол В - общий. Пусть коэффициент отношения сторон прямоугольника будет х. Тогда ТО=МК=4х, МТ=КО=7х Высота ВЕ ∆ МВК=ВН-ЕН=7-7х Из подобия треугольников следует отношение их высот и оснований: ВН:ВЕ=АС:МК 7:(7-7х)=10:4х 28х=70-70х 98х=70 х=70:98=5/7 см ⇒ МК=ТО=4*5/7=20/7=2 4/7 см МТ+КО=7*5/7=5 см Проверка: ТО:ОК=(20/7):5=4/7
в условии видимо ошибка: в отношении вместо FC нужно FD. Если так, то
Треугольники AFK и EBK подобны, коэффициент подобия 2 ( т.к. AF:BE=2:1). Тогда их высоты относятся как 2:1 и соответственно составляют 1/what и 2/3h, где h - высота параллелограмма к стороне AD.
Обозначим длину стороны AD=BC=a. Тогда AF=2/3a, BE=1/3a.
Значит S треугольника AFK = 1/2(2/3h×2/3a)= 2/9ah
S параллелограмма CEKF= S треугольника BCF - S треугольника BKE = 1/2ah - 1/2(1/3a×1/3h)=1/2ah-1/18ah=8/18ah=4/9ah.
---------
Сделаем рисунок треугольника АВС и вписанного прямоугольника ТМКО
Треугольники МВК и АВС подобны - МК||АС, углы при основаниях равны по свойству параллельных прямых и секущей, и угол В - общий.
Пусть коэффициент отношения сторон прямоугольника будет х.
Тогда ТО=МК=4х,
МТ=КО=7х
Высота ВЕ ∆ МВК=ВН-ЕН=7-7х
Из подобия треугольников следует отношение их высот и оснований: ВН:ВЕ=АС:МК
7:(7-7х)=10:4х
28х=70-70х
98х=70
х=70:98=5/7 см ⇒
МК=ТО=4*5/7=20/7=2 4/7 см
МТ+КО=7*5/7=5 см
Проверка:
ТО:ОК=(20/7):5=4/7
2
Объяснение:
в условии видимо ошибка: в отношении вместо FC нужно FD. Если так, то
Треугольники AFK и EBK подобны, коэффициент подобия 2 ( т.к. AF:BE=2:1). Тогда их высоты относятся как 2:1 и соответственно составляют 1/what и 2/3h, где h - высота параллелограмма к стороне AD.
Обозначим длину стороны AD=BC=a. Тогда AF=2/3a, BE=1/3a.
Значит S треугольника AFK = 1/2(2/3h×2/3a)= 2/9ah
S параллелограмма CEKF= S треугольника BCF - S треугольника BKE = 1/2ah - 1/2(1/3a×1/3h)=1/2ah-1/18ah=8/18ah=4/9ah.
Тогда отношение площадей равно= 4/9ah:2/9ah=2.