До ть, хоча б малюнок намалювати Величина двогранного кута дорівнює 30°. Площина α перетинає грані двогранного кута по паралельних прямих, віддалених від його ребра на 2√3см і на 6 см. Знайдіть відстань від ребра двогранного кута до площини α.
1. конус — тело, полученное объединением всех лучей, исходящих из вершины конуса, и проходящих через плоскую поверхность.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.Даны вершины пирамиды: А(21;0;0), В(42;0;0), С(21;-21;0), D(21;21;21).
Как видим, точки А, В и С находятся все в одной плоскости хОу.
Поэтому ответ на вопрос высоты ДД1 решается легко: эта высота равна координате точки Д по оси Oz,то есть 21.
Для определения высоты СС1 надо определить объём пирамиды и площадь грани АВД.
1. Находим координаты векторов.
Вектор АВ={xB-xA, yB-yA, zB-zA} 21 0 0
Вектор АC={xC-xA, yC-yA, zC-zA} 0 -21 0
Вектор АD={xD-xA, yD-yA, zD-zA} 0 21 21.
Объем пирамиды равен смешанному произведению векторов:
(AB{x1, y1, z1} ; AC{x2, y2, z2} ; AD{x3, y3, z3})= x3·a1+y3·a2+z3·a3.
Произведение векторов
a × b = {aybz - azby; azbx - axbz; axby - aybx}.
Подставив значения координат векторов, получаем:
2. Площади граней
a1 a2 a3 S =
ABC [AB ; AC]= 0 0 -441 220,5
АВD [AB ; AD]= 0 441 441 311,8341
3. Объем пирамиды
x y z
AB*AC 0 0 -441
AD 0 21 21
Произвед 0 0 -9261
V = (1/6) * 9261 = 1543,5.
Отсюда находим высоту СС1.
СС1 = 3V/S(ABD) = (3*9261/6)/311,8341 = 14,8492.