В равнобедренном Δ ABC угол А равен 90 градусов, боковые стороны AB и АC равны 10√2. Отрезок АД перпендикулярен плоскости треугольника АВС и равен 20.Найдите расстояние от точки Д до прямой ВС
Объяснение:
Пусть ДН⊥ВС. Тогда расстоянием от точки Д до прямой ВС будет отрезок ДН .
По т. о трех перпендикулярах АН⊥ВС.
1)ΔАВС-прямоугольный, по т Пифагора ВС=√((10√2)²+(10√2)² )=20.
2)В ΔАBС равнобедренном , высота АН является медианой ⇒
ВН=10 см.
3) ΔАВН -прямоугольный , по т. Пифагора ДH=√( (10√2)²-10²)= 10 (см).
В равнобедренном Δ ABC угол А равен 90 градусов, боковые стороны AB и АC равны 10√2. Отрезок АД перпендикулярен плоскости треугольника АВС и равен 20.Найдите расстояние от точки Д до прямой ВС
Объяснение:
Пусть ДН⊥ВС. Тогда расстоянием от точки Д до прямой ВС будет отрезок ДН .
По т. о трех перпендикулярах АН⊥ВС.
1)ΔАВС-прямоугольный, по т Пифагора ВС=√((10√2)²+(10√2)² )=20.
2)В ΔАBС равнобедренном , высота АН является медианой ⇒
ВН=10 см.
3) ΔАВН -прямоугольный , по т. Пифагора ДH=√( (10√2)²-10²)= 10 (см).
Обозначим вершины трапеции АВСD. В равнобедренной трапеции углы при основаниях равны, а сумма углов при боковой стороне равна 180°.
Острые углы при АD равны 180°-135₽=45°
Опустим высоты ВН и СК. ∆ АВН - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
∠ АВН=45°, ∆ АВН - равнобедренный, АН=ВН. ВС=ВН по условию. НК=ВС, КD=СК. Примем ВС=а.⇒ АD=3а
S (АВСD)=(а+3а)•a/2 ⇒ 2a²=50, a=√25=5 см. ⇒ АD=3•5=15 см