1.P=2(a+b), пусть а=х, тогда 30=2х+8х 30=10х х=3, первая сторона 4*3=12м, вторая сторона ответ: 3см, 3см, 12см, 12см 3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см. ответ: периметр = 34см 4.Меньшая диагональ АС=24см Угол А=60° Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см 5.Периметр= 4а а=46:4=11,5см Площадь= а^2=11,5×11,5=132,25см^2
AC = 12 см, AD/DC = 3/1 ⇒ AD = (3/4)•АС = 9 см, DC = 12 - 9 = 3 см
Пусть М и К - это точки касания вписанных окружностей в ΔАВD и ΔBDC соответственно, тогда по известной теореме про значения отрезков касательных:
Отрезок касательной равен разности полупериметра треугольника и противолежащей ей стороны
MD = p₁ - AB и KD = p₂ - BC
p₁ и р₂ - это полупериметры ΔABD и ΔBDC соответственно
Искомое рассстояние MK = MD - KD = p₁ - AB - (p₂ - BC) = p₁ - p₂ + BC - AB = (1/2)•(AB + AD + BD) - (1/2)•(BD + BC + DC) + ВС - АВ = (1/2)•(AD + BC - DC - AB) = (1/2)•(9 + 8 - 3 - 7) = (1/2)•7 = 3,5
Значит, МК = 3,5 см
ответ: 3,5 см
30=2х+8х
30=10х
х=3, первая сторона
4*3=12м, вторая сторона
ответ: 3см, 3см, 12см, 12см
3.Биссектриса угла А отсекает от прямоугольника равнобедренный треугольник АВЕ. Значит АВ=ВЕ=7см, ВС=7+3=10см. Периметр равен 2*(7+10)=34см.
ответ: периметр = 34см
4.Меньшая диагональ АС=24см
Угол А=60°
Меньшая диагональ делит ромб на 2 треугольника: АВС и АСD
Так как угол А= углу D= 60° , то треугольники равносторонние и сторона ромба =24 см
5.Периметр= 4а
а=46:4=11,5см
Площадь= а^2=11,5×11,5=132,25см^2