До стандартного набору пожежного щита, який повинен бути в кожному цеху на підприємстві, входить конічне відро з діаметром основи 30 см і висотою 35 см. відповідальному за пожежну безпеку на підприємстві потрібно пофарбувати 50 таких відер (зовні і зсередини). у нього є дві банки червоної фарби, кожна містить 0,9 кг. чи вистачить йому фарби, якщо для фарбування 1 м^2 металу витрачається 120 г фарби?
ответ: 1. Знайдіть площу круга, вписаного в трикутник зі сторонами
13 см, 14 см і 15 см.
а) 36π см2;
б) 32π см2;
в) 12π см2;
г) 16π см2.
2. Одна зі сторін прямокутника дорівнює 8 см. Знайти площу прямокутника, якщо площа круга, описаного навколо нього, дорівнює 25π см2.
а) 24 см2;
б) 48 см2;
в) 25 см2;
г) 80 см2.
3. У прямокутник ABCD вписано три рівних кола радіуса 4 см так, як показано на рисунку. Знайдіть площу тієї частини прямокутника, яка розміщена поза вписаним в нього колам.
а) 92(2 – π) см2;
б) 28(4 – π) см2;
в) 48(4 – π) см2;
г) 64(2 – π) см2.
4. Площа кругового сектора становить 5/9 площі круга. Знайти площу цього, якщо довжина дуги, на яку він опирається, дорівнює 20π см.
а) 190π см2;
б) 210π см2;
в) 160π см2;
г) 180π см2.
5. Знайти площу трапеції, якщо кути, прилеглі до більшої основи, дорівнюють 30° і 45°, а довжина кола, вписаного у трапецію, дорівнює 10π см2.
а) 50(2 + √͞͞͞͞͞2) см2;
б) 25(2 + √͞͞͞͞͞2) см2;
в) (1 + √͞͞͞͞͞2) см2;
г) 60(2 + √͞͞͞͞͞3) см2.
6. Знайти площу трапеції, якщо кути, прилеглі до меншої основи, дорівнюють 120° і 150°, а площа круга, вписаного у трапецію, дорівнює 64π см2.
а) 64(2 + √͞͞͞͞͞2) см2;
б) 54(1 + √͞͞͞͞͞2) см2;
в) 64(2 + √͞͞͞͞͞5) см2;
г) 32(2 + √͞͞͞͞͞5) см2.
7. Знайти площу трапеції, якщо один із кутів, що прилягає до більшої основі, дорівнює 45°, до меншої – 150°, а довжина кола, вписаного у трапецію, дорівнює 12π см.
а) 60(1 + √͞͞͞͞͞2) см2;
б) 72(2 + √͞͞͞͞͞2) см2;
в) 36(2 + √͞͞͞͞͞2) см2;
г) 70(2 + √͞͞͞͞͞2) см2.
8. Знайти площу трапеції, якщо кути, прилеглі до більшої основи, дорівнюють 30° і 60°, а площа круга, вписаного у трапецію, дорівнює 36π см2.
а) 64(3 + √͞͞͞͞͞3) см2;
б) 46(1 + √͞͞͞͞͞2) см2;
в) 48(3 + √͞͞͞͞͞5) см2;
г) 48(3 + √͞͞͞͞͞3) см2.
9. Знайти площу трапеції, якщо кути, прилеглі до меншої основи, дорівнюють 135° і 150°, а довжина кола, вписаного у трапецію, дорівнює 12π см.
а) 60(1 + √͞͞͞͞͞2) см2;
б) 72(2 + √͞͞͞͞͞2) см2;
в) 36(2 + √͞͞͞͞͞2) см2;
г) 70(2 + √͞͞͞͞͞2) см2.
10. Знайти площу трапеції, якщо один із кутів при меншій основі дорівнює 135°, при більшій – 30°, а площа круга, вписаного у трапецію, дорівнює 25π см2.
а) 10(2 + √͞͞͞͞͞2) см2;
б) 50(1 + √͞͞͞͞͞2) см2;
в) 5(2 + √͞͞͞͞͞2) см2;
г) 50(2 + √͞͞͞͞͞2) см2.
11. Знайти площу кругового сегмента з основою а√͞͞͞͞͞3 і висотою а/2.
12. Знайдіть площу круга, описаного навколо трикутника зі сторонами
7 см, 8 см і 9 см.
Объяснение:
1)
Диаметр вписанного в куб шара равен длине ребра куба, а радиус - половине длины ребра.
Площадь полной поверхности куба равна сумме площадей его 6-ти граней.
Площадь одной грани равна а² =1170/π :6=195/π
R²= (a/2)²=195/4π
Из формулы площади поверхности шара
S=4πR²=4π•195/4π=195 (ед. площади)
2)
Окружности, ограничивающие основания вписанного цилиндра изнутри касаются шара.
Осевое сечение цилиндра - прямоугольник, проходит через центр шара, при этом диаметр шара является диагональю этого прямоугольника.
Из формулы площади поверхности сферы 4πR²=100π находим её радиус R=5 ⇒ D=10
Диаметр основания цилиндра d=2r=8.
Из прямоугольного ∆ АВС высота ( образующая) цилинда ВС=6 ( по т.Пифагора или обратив внимание на отношение катета АС и гипотенузы АВ 4:5 - отношение сторон "египетского" треугольника)
Высота цилиндра - 6 ед. длины.