До кола з центром О проведено дотичну АВ ( точка В – точка дотику). Знайти радіус кола, якщо АВ = 8 см, ∟АОВ = 45 градусів. (У відповідь вписати тільки число)
Воспользуемся теоремой о свойстве касательной: Касательная к окружности перпендикулярна радиусу этой окружности,проведенному в точку касания. ⊥ ⊥ Δ и Δ прямоугольные ( как радиусы) общая Δ Δ (по гипотенузе и острому углу) Значит Пусть тогда Из Δ
по теореме косинусов:
с другой стороны из Δ
(1)
║ ⊥ ∩ ⇒ ⊥ Из C опустим перпендикуляр на сторону AD, т.е. ⊥ прямоугольник
2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.
- описана около Δ
и точки касания
?
Воспользуемся теоремой о свойстве касательной:
Касательная к окружности перпендикулярна радиусу этой окружности,проведенному в точку касания.
⊥
⊥
Δ и Δ прямоугольные
( как радиусы)
общая
Δ Δ (по гипотенузе и острому углу)
Значит
Пусть тогда
Из Δ
по теореме косинусов:
с другой стороны из Δ
(1)
║
⊥
∩ ⇒ ⊥
Из C опустим перпендикуляр на сторону AD, т.е.
⊥
прямоугольник
Δ равнобедренный, значит
Δ прямоугольный
подставим в (1) и получим ответ:
ответ:
рисунок в приложении
Объяснение:
1. 3) (неравенство треугольника);
2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.