До кола, вписаного в трикутник, проведено три дотичні, паралельні сторонам трикутника. Ці дотичні відтинають від даного трикутника три трикутники, радіуси описаних кіл яких дорівнюють R1, R2, R3. Знайдіть радіус описаного кола даного трикутника.
Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19
Полуплоскость в математике — множество точек плоскости, лежащих по одну сторону от некоторой прямой на этой плоскости. Координаты точек полуплоскости удовлетворяют неравенству: Ах + By + С > 0, где А, В, С — некоторые постоянные, причём А и В одновременно не равны нулю. Если сама прямая Ax + By + С = 0 (граница полуплоскости) причисляется к этой полуплоскости, то такую полуплоскость называют замкнутой. На комплексной плоскости z = х + iy рассматриваются: верхняя полуплоскость у = Im z > 0.
Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19