ответ: Пусть дан четырехугольник ABCD, вписанный в окружность. Если x — коэффициент пропорциональности, тогда ∠A = 2 * x, ∠B = 6 * x, ∠C = 7 * x.
1. В окружность можно вписать только такой четырехугольник, у которого суммы противолежащих сторон попарно равны, то есть в данном по условию четырехугольнике ABCD должно выполняться равенство:
∠A + ∠C = ∠B + ∠D.
Известно, что сумма всех углов четырехугольника равна 360°, тогда:
∠A + ∠B + ∠C + ∠D = 360°.
Подставим данные по условию значения в оба выражения:
2 * x + 7 * x = 6 * x + ∠D;
2 * x + 6 * x + 7 * x + ∠D = 360°.
Мы получили системы линейных уравнений с двумя переменными.
Приведем подобные слагаемые в первом уравнении и выразим ∠D:
2 * x + 7 * x - 6 * x = ∠D;
∠D = 3 * x.
Приведем подобные слагаемые во втором уравнении и выразим ∠D:
19t-11t = 8t = 32 градуса,
t=32/8 = 4 градуса,
<A = 11*4 = 44 градуса,
<B = 19*4 = 40+36 = 76 градусов,
<A+<B = 44 + 76 = 120 градусов.
<A и <B не являются смежными, т.к. их сумма отлична от 180 градусов. (сумма двух смежных углов = 180 градусов).
ответ. Нет.
2) <A = 7t; <B = 3t;
<A - <B = 7t - 3t = 4t = 72 градуса,
t = 72/4 = 18 градусов,
<A = 7*18 = 70+56 = 126 градусов,
<B = 3*18 = 30+24 = 54 градуса,
<A+<B = 126 + 54 = 180 градусов.
<A и <B являются смежными углами, т.к. их вторые стороны (которые не совпадают) являются сторонами развернутого угла в 180 градусов. Вторые стороны (которые не совпадают) дополняют друг друга до прямой.
ответ. Да.
ответ: Пусть дан четырехугольник ABCD, вписанный в окружность. Если x — коэффициент пропорциональности, тогда ∠A = 2 * x, ∠B = 6 * x, ∠C = 7 * x.
1. В окружность можно вписать только такой четырехугольник, у которого суммы противолежащих сторон попарно равны, то есть в данном по условию четырехугольнике ABCD должно выполняться равенство:
∠A + ∠C = ∠B + ∠D.
Известно, что сумма всех углов четырехугольника равна 360°, тогда:
∠A + ∠B + ∠C + ∠D = 360°.
Подставим данные по условию значения в оба выражения:
2 * x + 7 * x = 6 * x + ∠D;
2 * x + 6 * x + 7 * x + ∠D = 360°.
Мы получили системы линейных уравнений с двумя переменными.
Приведем подобные слагаемые в первом уравнении и выразим ∠D:
2 * x + 7 * x - 6 * x = ∠D;
∠D = 3 * x.
Приведем подобные слагаемые во втором уравнении и выразим ∠D:
∠D = 360° - 2 * x - 6 * x - 7 * x;
∠D = 360° - 15 * x.
Приравняем оба выражения:
3 * x = 360° - 15 * x;
3 * x + 15 * x = 360°;
18 * x = 360°;
x = 360°/18;
x = 20°.
2. Найдем градусные меры углов:
∠A = 2 * x = 2 * 20° = 40°.
∠B = 6 * x = 6 * 20° = 120°.
∠C = 7 * x = 7 * 20° = 140°.
∠D = 3 * x = 3 * 20° = 60°.