Уравнение биссектрисы первой координатной четверти у = х. Чтобы найти координаты центра заданной окружности надо решить систему: у = х (х-2)²+(у-5)²=(√5)². Вместо у подставим х, раскроем скобки и приведём подобные. х²-4х+4+х²-10х+25 = 5, 2х²-14х+24 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-14)^2-4*2*24=196-4*2*24=196-8*24=196-192=4;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√4-(-14))/(2*2)=(2-(-14))/(2*2)=(2+14)/(2*2)=16/(2*2)=16/4=4;
x₂=(-√4-(-14))/(2*2)=(-2-(-14))/(2*2)=(-2+14)/(2*2)=12/(2*2)=12/4=3. Координаты по оси Оу равны координатам по оси Ох. Имеем 2 центра окружности: (4; 4) и (3; 3).
Получили 2 точки для центра окружности, поэтому и 2 решения: (х-4)²+(у-4)² = 5, (х-3)²+у(-3)² = 5.
1) Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒ NC:СВ=6:3, и MC:СА=8:4. Одна из формул площади треугольника S=a•b•sinα•1/2, где а и b - стороны, α- угол между ними. Sin45°=√2/2, Тогда Ѕ(ACN)=6•4•√2/2=6√2. Медиана делит площадь треугольника пополам, три медианы делят его на 6 равновеликих треугольника. S(MNK)=6•Ѕ(ACN)=36√2 (ед. площади)
2) В ∆ АЕС по теореме синусов АЕ:sin∠С=АС:sin∠АЕC. Сумма углов треугольника 180°. В ∆ АВС ∠С =180°-(α+ β). ∠АЕС=180°-γ. ⇒ m:sin(180°-α- β)= =AC:sin(180°-γ), откуда АС=m•sin(180*-γ)/sin(180*-α-β).
3) Диагонали параллелограмма точкой пересечения делятся пополам. ⇒ В треугольнике МNP отрезок МО - медиана. Формула медианы произвольного треугольника М=(√(2a²+2b²-c²):2, где а и b - стороны, с - сторона, которую медиана делит. ⇒ МС=2МО=√(32+72-28)=2√19 ед. длины.
Или
Из ∆ МNP по т.косинусов NP²=MN²+MP²-2•MN•NP•cosNMP ⇒ MP²=16+36-48•cosNMP ⇒ cosNMP=(28-52):(-48)=1/2
По т.косинусов МК²= MN²+NK²-(-2•MN•NK•cos∠MNK). Сумма соседних углов параллелограмма 180° (т.к. МР||NK, MN - секущая, угол NMP и угол MNK- внутренние односторонние). ⇒cosMNK= - cosNMP ⇒ МК=√(52+24)=2√19 (ед. длины)
Чтобы найти координаты центра заданной окружности надо решить систему: у = х
(х-2)²+(у-5)²=(√5)². Вместо у подставим х, раскроем скобки и приведём подобные.
х²-4х+4+х²-10х+25 = 5,
2х²-14х+24 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-14)^2-4*2*24=196-4*2*24=196-8*24=196-192=4;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√4-(-14))/(2*2)=(2-(-14))/(2*2)=(2+14)/(2*2)=16/(2*2)=16/4=4;
x₂=(-√4-(-14))/(2*2)=(-2-(-14))/(2*2)=(-2+14)/(2*2)=12/(2*2)=12/4=3.
Координаты по оси Оу равны координатам по оси Ох.
Имеем 2 центра окружности: (4; 4) и (3; 3).
Получили 2 точки для центра окружности, поэтому и 2 решения:
(х-4)²+(у-4)² = 5,
(х-3)²+у(-3)² = 5.
1) Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒ NC:СВ=6:3, и MC:СА=8:4. Одна из формул площади треугольника S=a•b•sinα•1/2, где а и b - стороны, α- угол между ними. Sin45°=√2/2, Тогда Ѕ(ACN)=6•4•√2/2=6√2. Медиана делит площадь треугольника пополам, три медианы делят его на 6 равновеликих треугольника. S(MNK)=6•Ѕ(ACN)=36√2 (ед. площади)
2) В ∆ АЕС по теореме синусов АЕ:sin∠С=АС:sin∠АЕC. Сумма углов треугольника 180°. В ∆ АВС ∠С =180°-(α+ β). ∠АЕС=180°-γ. ⇒ m:sin(180°-α- β)= =AC:sin(180°-γ), откуда АС=m•sin(180*-γ)/sin(180*-α-β).
3) Диагонали параллелограмма точкой пересечения делятся пополам. ⇒ В треугольнике МNP отрезок МО - медиана. Формула медианы произвольного треугольника М=(√(2a²+2b²-c²):2, где а и b - стороны, с - сторона, которую медиана делит. ⇒ МС=2МО=√(32+72-28)=2√19 ед. длины.
Или
Из ∆ МNP по т.косинусов NP²=MN²+MP²-2•MN•NP•cosNMP ⇒ MP²=16+36-48•cosNMP ⇒ cosNMP=(28-52):(-48)=1/2
По т.косинусов МК²= MN²+NK²-(-2•MN•NK•cos∠MNK). Сумма соседних углов параллелограмма 180° (т.к. МР||NK, MN - секущая, угол NMP и угол MNK- внутренние односторонние). ⇒cosMNK= - cosNMP ⇒ МК=√(52+24)=2√19 (ед. длины)