Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Находим длины сторон.
AB (c) = √((xB-xA)² + (yB-yA)²) = 20 4,472135955
BC (a) = √((xC-xB)² + (yC-yB)²) = 20 4,472135955
CD = √((xD-xC)² + (yD-yC)²) = 20 4,472135955
AD = √((xC-xA)² + (yC-yA)²) = 20 4,472135955 .
Находим длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = 72 8,485281374
BD = √((xD-xB)² + (yD-yB)²) = 8 2,828427125 .
Как видим, это ромб.
Его площадь S = (1/2)*AC*BD = (1/2)*V72*V8 = 12.
Высоты равны h = S/a = 12/V20 = 12/(2V5) = 6V5/5.
Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра.
К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0)
то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно.
Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c.
Вот тут самая важная часть решения.
"С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба.
Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней.
В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра).
То есть получается такая задача для нахождения b (при заданном c)
"В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2".
Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1);
Отсюда b = 2√3; b^2 = 12;