Дано: δ авс ∠с=90° ак - биссектриса ак=18 см км=9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км рассмотрим полученный δакм, т.к. ∠амк=90°, то ак - гипотенуза, а км - катет поскольку, исходя из условия, катет км=9/18=1/2 ак, то ∠кам=30° т.к. по условию ак - биссектриса, то ∠сак=∠кам=30° рассмотрим δакс по условию ∠аск=90°; а ∠сак=30°, значит, ∠акс=180°-90°-30°=60° искомый ∠акв - смежный с ∠акс, значит ∠акв=180° - ∠акс=180°-60°=120° ответ: 120°
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0