Диаметр MN и хорда MD проводятся через точку M, лежащую на окружности. MD = 12 и NMD = 30 °, хорда DK перпендикулярна диаметру MN и пересекается в точке E. Найдите длину хорды DK
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
пусть у тебя куб ABCDA1B1C1D1 (у меня нижняя грань ABCD)
рассмотрим треугольник D1DB:
пусть а- ребро куба
рассмотрим тр ADB:
AD=AB=a
угол DAB=90гр, так как куб,
следовательно, по теореме пифагора
DB=а* корень из 2
рассмотрим тр D1DB:
угол D1DB=90 гр, так как куб и плоскости граней перпендикулярны
DD1=A
DB=a* корень из 2
D1B=6
по теореме Пифагора
6 в квадрате=а в квадрате * (а *корень из 2)в квадрате
отсуда а=корень из 12
угол между прямо и плоскость это угол между прямой проэкцией это прямой на плоскость.
проэкцией прямой D1B на плоскость ABCD будет DB (если не знаешь почему, спроси, объясню)
значит нам нужен косину угла D1BD
косинус угра = отношению прилежащего катета к гипотенузе
косD1BD=DB/BD1
косD1BD=а*корень из 2 /6=а* корень из(2/12)=а/корень из 6
)))