Смежные углы - соседние углы, образовавшиеся при пересечении двух прямых. Cумма углов треугольника и двух смежных углов равна 180° 1)
a) ∠B=38° как накрест лежащий, аналогично ∠C=85°; ∠A=180-38-85=57°
б) ∠B=50°; ∠A=90° по условию чертежа; ∠C=180-50-90=40°
2)
а) ∠x смежен с соотвественным углом при параллельных прямых a и b т.к. другая прямая образует два угла, равных 90°, с ними; Этот угол равен 65°; значит ∠x=180-65=115°
б) Аналогично x смежен с углом 122°; прямые c и d параллельны по равенству накрест лежащих углов у другой прямой с ними,
x=180-122=58°
3)
∠FRP=30° как накрест лежащий, ∠FRP=∠FPR т.к. RF=FP (У треугольника с двумя равными сторонами углы при них равны); ∠RFP=180-30-30=120°; ∠SFR=180-120=60°; ∠SFT=∠SFR-∠TFR=60-30=30°
∟DBK = 60°
Объяснение:
решение вопроса
+4
Дано: ∟ABC - прямий (∟ABC = 90°). ∟ABE = ∟EBF = ∟FBC.
BD - бісектриса ∟ABE, ВК - бісектриса ∟FBC. Знайти: ∟DBK.
Розв'язання:
Нехай ∟ABE = ∟EBF = ∟FBC = х.
За аксіомою вимірюваиня кутів маємо:
∟ABC = ∟ABE + ∟EBF + ∟FBC.
Складемо i розв'яжемо рівняння:
х + х + х = 90; 3х = 90; х = 90 : 3; х = 30. ∟ABE = ∟EBF = ∟FBC = 30°.
За означениям бісектриси кута маємо:
∟ABD = ∟DBE = 30° : 2 = 15°; ∟CBК = ∟KBF = 30° : 2 = 15°.
За аксіомою вимірювання кутів маємо:
∟ABC = ∟ABD + ∟DBK + ∟KBC, ∟DBK = ∟ABC - (∟ABD + ∟KBC),
∟DBK = 90° - (15° + 15°) = 90° - 30° = 60°. ∟DBK = 60°.
Объяснение:
Смежные углы - соседние углы, образовавшиеся при пересечении двух прямых.
Cумма углов треугольника и двух смежных углов равна 180°
1)
a) ∠B=38° как накрест лежащий, аналогично ∠C=85°; ∠A=180-38-85=57°
б) ∠B=50°; ∠A=90° по условию чертежа; ∠C=180-50-90=40°
2)
а) ∠x смежен с соотвественным углом при параллельных прямых a и b т.к. другая прямая образует два угла, равных 90°, с ними;
Этот угол равен 65°; значит ∠x=180-65=115°
б) Аналогично x смежен с углом 122°; прямые c и d параллельны по равенству накрест лежащих углов у другой прямой с ними,
x=180-122=58°
3)
∠FRP=30° как накрест лежащий, ∠FRP=∠FPR т.к. RF=FP (У треугольника с двумя равными сторонами углы при них равны);
∠RFP=180-30-30=120°; ∠SFR=180-120=60°;
∠SFT=∠SFR-∠TFR=60-30=30°