Диагональ ВD трапеции АВСD перпендикулярна стороне АВ, угол АВD=40. Вычислить остальные углы трапеции, если меньшее основание равно другой боковой стороне
Диаметр описанной около правильного треугольника окружности равен 2/3 от биссектрис этого треугольника.
Так как треугольник правильный, то биссектриса является и медианой, и высотой. Предположим, что нам дан треугольник ABC. BH и AE - высоты к AC и BC соответственно. BH и BE пересекаются в точке O.
Медианы делятся в отношении 2:1. То есть BO : OH = 2 : 1. При этом BO - искомый радиус.
Так как BH - медиана, то AH = 1/2 AC = 3√3 см BH - высота ⇒ треугольник AHB - прямоугольный. По теореме Пифагора найдём BH: BH² = AB² - AH² BH² = 36*3 - 9*3 = 9(12 - 3) = 9 * 9 = 81 BH = 9 см
рисуем прямоугольный треугольник abc.
называем его с угла равным 90 градусам, тоесть угол a будет равен 90 градусам и верхний угол b а нижний правый c.
из угла a проводим высоту к стороне bc.
у нас получается два треугольника abh и ahc.
пусть cah будет равен 50 градусам (по условию).
значит из 90* - 50* = 40* - угол bah.
ah - высота
угол bah = 40*, следовательно
угол b равен b=180*-(40*+90*) = 50*
рассмотрим: треугольник abc-прямоугольный.
угол a=90*
угол b=50*, то угол c=180*-(90*+50*)=40*
подробнее - на -
Так как треугольник правильный, то биссектриса является и медианой, и высотой.
Предположим, что нам дан треугольник ABC. BH и AE - высоты к AC и BC соответственно. BH и BE пересекаются в точке O.
Медианы делятся в отношении 2:1. То есть BO : OH = 2 : 1. При этом BO - искомый радиус.
Так как BH - медиана, то AH = 1/2 AC = 3√3 см
BH - высота ⇒ треугольник AHB - прямоугольный. По теореме Пифагора найдём BH:
BH² = AB² - AH²
BH² = 36*3 - 9*3 = 9(12 - 3) = 9 * 9 = 81
BH = 9 см
BO = 2/3BH = 2/3 * 9 = 6 см
ответ: радиус равен 6 см.