Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
АВСДЕФ - шестиугольник, АВ=10, ВС=СД=ДЕ=ЕФ=АФ. В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2. ∠ВОК=45°, ∠АОВ=90°. ∠ОАВ=∠ОВА=45°. В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°. Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них. ∠ВСД=63+63=126°. В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ. ∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.
В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2.
∠ВОК=45°, ∠АОВ=90°.
∠ОАВ=∠ОВА=45°.
В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°.
Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них.
∠ВСД=63+63=126°.
В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ.
∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.