1) докажем. что диагонали в точке пересечения делятся пополам. для чего найдем середины АС и ВD, тем самым покажем, что четырехугольник - параллелограмм, потом 2) покажем равенство длин двух смежных сторон. что и будет завершением доказательства.
1) Середина АС: х=(-12+5)/2=-3.5; у=(6-1)/2=2.5; точка (-3.5;2.5)- середина АС;
Середина ВD: х=(0-7)/2=-3.5; у=(11-6)/2=2.5; точка (-3.5;2.5)- середина ВD; показали пересечение диагоналей в одной точке.
ответ:Номер 1
Треугольник АВD равен треугольнику ВСD,,это прямоугольные треугольники и равны по 5 признаку равенства прямоугольных треугольников
ВD-общая сторона и она же гипотенуза
АВ=СD,по условию задачи,и это катеты
Номер 2
Треугольники МКТ и КТN прямоугольные и равны по 1 признаку равенства прямоугольных треугольников,по двум катетам
КТ-общая сторона и катет
МИ=TN по условию задачи
Номер 3
Треугольники равны по 3 признаку равенства прямоугольных треугольников-по катету и противолежащему углу
SK-общая сторона и катет
<Р=<R
Номер 4
Прямоугольные треугольники равны по 4 признаку равенства прямоугольных треугольников-по гипотенузе и острому углу
ЕF-общая сторона,она же гипотенуза
<REF=<SEF по условию задачи
Номер 5
Треугольник SPM равен треугольнику МКТ по 5 признаку равенства прямоугольных треугольников-по гипотенузе и катета
SM=MT
PS=KT
Треугольники RPM и RMK тоже прямоугольные и равны по 5 признаку равенства -по гипотенузе и катета
RM-общая сторона и гипотенуза
РМ=МК,т к треугольники SPM и MKT равны между собой
Треугольники SRM и RMT равны между собой,т к каждый из них состоит из двух равных треугольников
Номер 6
Треугольники АЕD и DFB равны между собой по 5 признаку равенства прямоугольных треугольников-по катету и гипотенузе
АD=DB
ED=DF
Треугольники СЕD и СDF равны по 5 признаку равенства прямоугольных треугольников
ЕD=DF
CD-общая сторона и гипотенуза
Треугольник АСD и CDB равны между собой,т к состоят из двух равных между собой треугольников
Номер 7
Треугольник МRS равен треугольнику RNS по 4 признаку равенства прямоугольных углов-по гипотенузе и острому углу
RS-гипотенуза и общая сторона
<NRS=<MSR по условию
Номер 8
Треугольники КМN и MLN равны по 4 признаку равенства прямоугольных треугольников-по гипотенузе и острому углу
МN-oбщая сторона и гипотенуза
<LMN=<KNM
Номер 9
Треугольник АСВ равнобедренный,т к
АD=FB;DC=CF,поэтому
<А=<В
Треугольники
АЕD и FMB равны между собой по 4 признаку равенства прямоугольных треугольников по гипотенузе и острому углу
<А=<В
AD=FB
Номер 10
Треугольники АDB и DBC равны между собой по 1 признаку равенства прямоугольных треугольников-по двум катетамDB- катет и общая сторона
АD=CB
Объяснение:
1) докажем. что диагонали в точке пересечения делятся пополам. для чего найдем середины АС и ВD, тем самым покажем, что четырехугольник - параллелограмм, потом 2) покажем равенство длин двух смежных сторон. что и будет завершением доказательства.
1) Середина АС: х=(-12+5)/2=-3.5; у=(6-1)/2=2.5; точка (-3.5;2.5)- середина АС;
Середина ВD: х=(0-7)/2=-3.5; у=(11-6)/2=2.5; точка (-3.5;2.5)- середина ВD; показали пересечение диагоналей в одной точке.
2) АВ=√((0+12)²+(11-6)²)=√(144+25)=13
АD=√((-7+12)²+(-6-6)²)=√(25+144)=13
АВ=АD
Доказано.