Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
15 ед. изм.³
Объяснение:
Условие задачи.
Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
80 * 3/16 = 5 * 3 = 15 единиц измерения³.
ответ: 15 ед. изм.³
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.